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Abstract. A major problem in cosmic microwave back-
ground radiation (CMBR) anisotropy measurements is the
presence of low-frequency noise in the data streams. This
noise arises from thermal instabilities of optical elements
or of the thermal bath, gain instabilities and 1/f noise in
the electronics, and other poorly understood processes.
If improperly monitored or processed, this excess low-
frequency noise might lead to striping in the maps, com-
promising the success of the experiment. In this paper,
we show that a simple destriping method will clean the
maps obtained with the High Frequency Instrument of
the PLANCK SURVEYOR mission of any significant ad-
ditional noise from low-frequency drifts, provided that the
knee frequency of the low frequency noise is less than the
spinning frequency of the satellite, i.e. fknee ≤ 0.017 Hz.
For the High Frequency Instrument of PLANCK, the nom-
inal knee frequency of the noise is fknee ' 0.01 Hz or less,
and thus no significant striping nor increase of the noise
rms is expected due to low-frequency drifts. In addition,
we show that even if the knee frequency of the low fre-
quency noise were somewhat higher than the spinning fre-
quency of the satellite one could estimate and remove the
striping with a excellent accuracy.

Key words: methods: data analysis — cosmology: cosmic
microwave background — space vehicles

1. Introduction

After the encouraging results of the DMR experiment
on the COBE satellite (Smoot 1992), there has been a
burst of renewed interest in the anisotropies of the Cosmic
Microwave Background Radiation (CMBR), both on the
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experimental side and on the theoretical side. While the-
orists refined calculations to evaluate how individual pa-
rameters of the theories affect the expected properties of
the tiny fluctuations of the CMBR, experimenters, in an-
swer to announcements of opportunities by several space
agencies, proposed sophisticated new generation satellites
to map the anisotropies of the CMBR with a sensitiv-
ity and angular resolution an order of magnitude better
than those of COBE. Of these, the Microwave Anisotropy
Probe (MAP) experiment has been selected by NASA
as one of the next medium-size explorer, or midex, and
the PLANCK satellite (formerly COBRAS/SAMBA) has
been selected by ESA as the next medium-size mission
M3.

The accuracy with which the useful cosmological in-
formation can be deduced from the data of such a mission
depends on the global characteristics of the instrument
and on the observing strategy: sensitivity of the detectors,
spectral coverage, resolution, susceptibility to systematics,
scanning strategy... the optimal solution is often a trade-
off between several marginally compatible constraints, and
very different strategies can be adopted.

Because a large telescope is necessary in order to
achieve the high angular resolution that is mandatory
to distinguish between cosmological models, the option
of differential measurements implies complicated optics.
Fortunately, the availability of space-qualified cryogenic
devices (Benoit et al. 1994) and the development of new
readout electronics (Gaertner et al. 1997) now permits to
use in space bolometers cooled to 0.1 K. These are much
more sensitive than available radiometers at the frequen-
cies most interesting for cosmology, and so much more
stable that for the PLANCK bolometer instrument (HFI,
for High Frequency Instrument), the conservative differen-
tial approach has been abandoned in favour of total-power
measurements.

In the case of the nominal PLANCK mission, the scan-
ning of the sky is performed very simply, by rotating the
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satellite at 1 rpm around a spin axis which position on
the sky is roughly anti-solar (to first order the spin axis
remains in the ecliptic plane, and its position is shifted
by ∼ 5′ every 2 hours). There is some flexibility as to
the direction of the spin axis, however, so that the scan-
ning strategy can be adapted for optimal sky coverage or
rejection of systematics within technical constraints (the
thermal stability of the payload puts a limit on the solar
aspect angle of 15◦, and the telemetry rate a limit on the
earth aspect angle of 15◦ during the dumping of the data).

The beam axis makes an angle of 70◦ with the spin
axis, and thus scans 140◦ diameter circles on the sky.
The PLANCK orbit is a Lissajous orbit around the sun-
earth Lagrange point L2. More details on PLANCK can
be found in the COBRAS/SAMBA report on the phase A
study (1996).

For this observing strategy, there are several important
characteristic time-scales. One scan corresponding to one
complete rotation of the satellite around itself is performed
in a time Tspin = 1 minute. Data circles are obtained by
averaging 120 such scans, and correspond to a period of
two hours. Each of these data circles crosses in two points
all other data circles obtained less than about 20 weeks
before or after. Thus, they share a common area on the sky
of at least two pixels (and more for circles that are tangent
or nearly tangent). Finally, data circles corresponding to
measurements separated by a 1 year period coincide on the
sky. Figure 1 shows four PLANCK SURVEYOR circles on
a sinusoidal projection of the sky in ecliptic coordinates.

Fig. 1. Sinusoidal projection of four scans for the nominal
PLANCK SURVEYOR scanning strategy. The second, third
and fourth scans from the left (long-dashed, short-dashed, and
dotted line) are obtained 2 weeks, 2 months, and 5 months
respectively after the first (plain line). Because these circles
have 140◦ diameters, intersections are distributed everywhere
along circles, not only at ecliptic poles as for great circles. Not
all pairs of circles intersect: here for instance the first and last
circles, separated by a period of 5 months, have no pixel in
common

All these redundancies at very different time-scales
make it possible to minimise low-frequency noise effects
by comparing the values the signal takes at times where

the useful astrophysical signal is supposed to be the same
(because the antenna is pointed at the same place on the
sky) and thus estimating and correcting for low-frequency
drifts.

It has recently been suggested that the scanning strat-
egy and destriping method adopted for PLANCK might
lead to striping on the maps due to excess low-frequency
noise even if there were no intrinsic low frequency noise in
the measurements (Wright 1996).

In that paper, the author argues correctly that relying
on no more than a pixel or two per scan (namely, ecliptic
poles) to readjust relative offsets might cause striping in
the maps. However, when suggesting that for this reason
the PLANCK maps will be striped, he seems to disregard
completely two essential characteristics of the PLANCK
SURVEYOR scanning strategy, which are the 15◦ freedom
of motion of the spin axis and the 70◦ off-axis spin angle,
any of which characteristics modifies completely the way
circles on the sky intersect each other. Thus, his suggested
conclusions should be regarded with extreme caution.

In the following, we investigate how well a simple de-
striping technique can remove the striping in the maps in
the context of the PLANCK SURVEYOR mission.

2. Analysis of the “noise processing”

It is in general a reasonably good assumption that the
total noise (excluding systematics that might be scan-
synchronous or correlated to the signal), be a Gaussian
process that can be described by a Power Spectral Density
(PSD, in Volts2 of electrical signal per Hz) typically of the
form:

Sn(f) = a

(
1 +

(
fknee

f

)α)
· (1)

Here fknee is a “knee frequency” at which low-frequency
noise and white noise contributions to the power spectral
density are statistically equal, and α is a spectral index,
typically between 1.0 and 2.5, depending on the dominant
physical process which generates low frequency noise. It
is a good approximation to assume that Sn(f) vanishes
for f < fmin and f > fmax, with fmin ∼ 1/Ttotal and
fmax ∼ 1/2Tsampling.

In an experiment for which the scanning strategy con-
sists in scanning repeatedly the same circle of the sky,
the sky signal for any given pixel is calculated by averag-
ing the “samples” corresponding to this pixel. When the
white noise contribution dominates the total noise, i.e.
when fknee and α are such that

fmax − fmin �

∫ fmax

fmin

(
fknee

f

)α
df, (2)

which can be simplified to fmax/fknee � ln (fmax/fmin) if
α = 1, and fmin � fmax, or to fmin/fmax � (α − 1) ×
(fmin/fknee)

α
if α > 1 and fmin � fmax, then the rms
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of the final noise on one scan circle obtained by averag-
ing N consecutive scans is just the rms of the original
noise divided by

√
N . This is not the case when the noise

is significantly coloured (i.e. not white), since averaging
consecutive scans actually reduces the bandwidth of the
signal in such a way that most of the low-frequency noise
contribution at frequencies f < 1/Tspin is filtered out. In
Fourier space, the spinning and averaging process keeps
all components of the signal that are harmonics of the
spinning frequency, and cuts other components (this is
only an approximation, but good enough for this discus-
sion). In our case, the low-frequency contribution to the
standard deviation will be much larger on a 2-hour data
stream than on the corresponding circle of data obtained
by averaging.

Fig. 2. Example of 8 consecutive hours of simulated
low-frequency noise, with α = 2.0 and fknee = 0.10 Hz. These
values are typical for ground-based experiments which suf-
fer from thermal fluctuations and atmospheric noise (for the
PLANCK HFI, due to the extremely favourable observing con-
ditions, we expect the low-frequency drifts to be dominated by
electronics noise, i.e. α ' 1.0 and fknee ≤ 0.01 Hz instead).
The top panel shows drifts due to the low-frequency part of the
noise only, with a spectrum of the form S(f) = a× (fknee/f)2.
The effect of adding the white noise contribution (which has
a standard deviation of 1.00) would be a strong broadening
of the line. The bottom panel shows the absolute value of the
FFT of the total noise. The knee frequency of 0.10 Hz is clearly
visible

The top plot of Fig. 2 is a plot of 8 hours of the low-
frequency part of a noise with a spectrum of the form of
Eq. (1), with α = 2.0 and fknee = 0.10 Hz (which is ex-
tremely pessimistic for the PLANCK HFI, but illustrates

our point better than more realistic noise: drifts on the
scale of 8 hours are almost imperceptible for α = 1.0 and
fknee = 0.01 Hz unless the noise is significantly smoothed
to filter high frequency components). Such figures for the
noise are quite typical for ground-based CMB experi-
ments. Only the low-frequency component is represented
in the top panel of Fig. 2 (which corresponds thus to a
spectrum or PSD of Sn(f) = (fknee/f)2). Units for noise
generation have been normalised so that the rms of the
white part of the noise per sample is 1.00 (and the rms
per resolution element on a data circle, obtained from av-
eraging the 120 consecutive scans of one 2-hour period for
one detector, would be 1/

√
120 = 0.091 if there were no

low frequency noise). In this simulation, the sampling fre-
quency is 2034 samples per minute, which for PLANCK
corresponds to one sample per 10 arcminute pixel. The
bottom plot of Fig. 2 is the absolute value of the Fast
Fourier Transform of the noise realization with white noise
included as well as the low-frequency part. The knee fre-
quency of about 0.10 Hz is clearly visible.

Fig. 3. Residual total noise on 4 consecutive circles, each ob-
tained by averaging 120 consecutive 1 minute scans of the
8-hour sample of the simulated low-frequency noise plotted in
Fig. 2. The data for each circle looks flat at this scale, but each
circle has a very different offset

Low frequency drifts with an amplitude of a few
(whereas the rms of the white part of the noise only is
1.00) are obvious in Fig. 2. The standard deviation of the
total 8-hour noise (white + low-frequency) is about 2.49,
that of the low-frequency part is 2.28, and that of the
white part is 1.00. However, what actually happens on
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circles after 120 consecutive scans have been averaged is
shown in Fig. 3, where the data corresponding to the four
circles obtained from this 8-hour signal are plotted with
the same units on the vertical axis. Here, the white noise
component has been included. The variance on each in-
dividual circle is much smaller than that of the original
signal, because each circle is obtained by averaging 120
scans as explained above. Also, it is impressive to notice
that almost all the power of low frequency noise now ap-
pears in the form of a different “offset” Ai for each circle
i. The average level of all the circles is not the same, but
low frequency drifts on each circle are much smaller than
on the original time sequence.

Fig. 4. Here we show the centred signal for each of the circles
of Fig. 3. Note the scale compared to that of Fig. 2 and Fig. 3.
Even for the very pessimistic assumed values for α and fknee,
low frequency drifts are barely visible in the white noise

It is important to check whether the low frequency
noise will have any effect other than to add a different
offset to the data corresponding to each circle. Figure 4
shows the centred noise for each of the above 4 circles.
Even with the very pessimistic values of α and fknee used
here, low-frequency drifts are almost too low to be dis-
tinguished in the dominating white noise. If however we
remove the white part of the noise and look at the four cir-
cles (Fig. 5), we see clearly that some low frequency drifts
are still there, which would appear if a drastic smoothing
of the data were performed.

A crude estimate of the increase of the standard devi-
ation of the noise on a circle (compared to the standard
deviation of white noise only) can be obtained by inte-

grating the PSD between fmin ∼ fspinning ' 1/60 Hz and
fmax ' fsampling/2. This method underestimates slightly
the rms increase because drifts at frequencies lower than
the spinning frequency are not totally cut out by the spin-
chopping. The steeper the noise spectrum, the less accu-
rate this method is. A rigorous calculation can be found
in (Janssen et al. 1996) for the special case of α = 1.

Although this additional noise power is quite low, it
is at low frequency only, and the effect on the accuracy
of the measurement of interesting cosmological quantities
(e.g., the power spectrum of the fluctuations) should be
investigated. For instance, it should be kept in mind that
when the resolution of maps is degraded by smoothing,
the standard deviation of pure white noise scales as the
inverse of the size of the pixel, whereas the standard devi-
ation of parallel stripes scales roughly as the square root of
the size of the pixel. Quantifying the effect of striping on
sophisticated statistical tests or pattern recognition meth-
ods is even harder, and may require the help of numerical
simulations of two-dimensional noise maps.

Fig. 5. Residual of low frequency component of the noise only
for each of the circles of Fig. 4. These structures, which can
barely be distinguished in Fig. 4, would appear more and more
clearly if the data were smoothed

3. From scan circles to sky maps

What is the effect of reprojecting data circles as those of
Fig. 3 on sky maps? The answer depends on the statis-
tical properties of the noise along the “data circles”, on
the scanning strategy, and on the way that the relative
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“offsets” of the data circles are readjusted with respect to
one another.

3.1. Readjusting the offsets of the circles

It is clear from looking at Fig. 3 and from the above dis-
cussion that we should first find a way to adjust the rel-
ative values of the offsets Ai of the different data circles
before reprojecting on the sky. Even for very low values
of the knee frequency, there is no hope to keep the sig-
nal from diverging on time-scales of a few months. Just
setting the average level of each circle to zero is not good
enough, since there is no reason the average level of the
useful signal on each circle should be the same, and the
only measurement we have access to is signal+noise.

For PLANCK, the observing strategy ensures that, in
addition to the short term redundancy provided by “spin-
chopping”, there is also redundancy at long periods. In
particular, as each data circle (obtained from 120 super-
imposed scans) crosses 3360 other such circles in two spots
for a 1 year mission, it is quite natural, as a first order
method for suppressing low-frequency noise effects, to try
to readjust the average relative offset of the data circles
by imposing that all the differences between signal over
the same sky pixels but observed with different rotation
axis of the satellite (at different times) are minimised. One
key requirement on the scanning strategy for this method
to work properly is that any given circle do not cut all
the other circles in just a small number of pixels, in which
case the adjusted value for the offset of that circle would
depend drastically on the realization of the (white part
of the) noise on the pixels used for the adjustment. For
PLANCK, the scanning strategy is such that all the pix-
els of a circle are seen by at least one other circle, and
thus all of them are used for the readjustment.

This method allows one to estimate the drifts due
to low-frequency noise independently of the useful sig-
nal from the sky, since only differences of the total (sig-
nal+noise) at times where the beam is pointing on the
same direction of the sky are used.

What should the accuracy of this method be? For a
simple scanning strategy where the spin axis of the satel-
lite is kept in the ecliptic, all circles play the same role
(total symmetry), and thus σstripes(i), the rms of the er-
ror on readjusting the offset for circle i, should be the
same for all circles. If we denote by σn the rms of the
noise per pixel on a single circle obtained by averaging
120 scans, the accuracy of the determination of the offsets
will be of the order of σn/

√
Nj , where Nj is the number

of independent pixels per circle.
It would be possible to optimise the scanning so that

there be no preferred direction for this residual striping
(which is anyway small, as for the PLANCK HFI Nj is
about 2000 to 4500, depending on the channel), but it does
not seem worth compromising the monitoring of other sys-
tematics and noise in the process.

Note that if we could build an ideal experiment with
no low-frequency noise, the value for σstripes that we would
estimate just from sample variance on a circle of Nj pix-
els would be σstripes

2 = σn
2/Nj , and thus no significant

additional striping should be added by this inversion.
In order to check the above assertions about the ac-

curacy of offset readjusting, and to evaluate the effect of
low frequency noise on PLANCK maps, a low-resolution
version of the expected PLANCK data has been simu-
lated. For the moment, the simulation of the complete
data stream for one detector at the actual PLANCK res-
olution is out of reach of our computers. However, the
conclusions obtained with a degraded resolution can be
scaled to the actual resolution.

In this simulation, a vector of spin-axis positions on
the sky corresponding to a scanning strategy of PLANCK
is generated. Each position of the spin-axis is distant from
the previous one by a step equal to the resolution at which
the simulation is performed, and for each such position, a
vector of beam positions on a circle of radius 70◦ on the
sky is generated. For each beam position, a single one de-
gree by one degree pixel on a simulated map of the sky is
selected. A two-dimensional set of data corresponding to
these beam positions is generated. Here we assume that
the knee frequency of the low frequency noise is small
enough that there be no significant low-frequency contri-
bution to the noise along individual data circles. We sim-
ulate the effect of low frequency drifts by adding to each
data circle some offset Ai.

The actual data taking process is such that the zero
level of the measurements is frequently readjusted, in or-
der to avoid the saturation of the detectors due to slow
drifts in the signal. In the end, the average value of the
signal on each circle is not known precisely, but certainly
does not drift by more than a couple orders of magnitude
(extremely conservative assumption!).

The actual inversion is performed by the following least
mean square method. The linear system of equations on
the constants Ai to be determined is obtained by requiring
a function S(A1, ..., An) to be minimal. Here we take:

S(Ai) =
∑
p∈sky

n(p)∑
i1=2

i1−1∑
i2=1

wi1,i2 × (δ(i1, i2)−Ai1 +Ai2)2 (3)

where δ(i1, i2) is the estimated difference of offsets ob-
tained by comparing the measurements of circle i2 and
circle i1 on pixel p, n(p) is the number of times pixel p is
seen by the experiment, and wi1,i2 is a weight attributed
to measurement δ(i1, i2). Since pixel p contributes n(p)×
(n(p)−1)/2 terms in the sum, we set wi1,i2 = 2/(n(p)−1)
(the total weight of the contribution of the n(p) measure-
ments at pixel p is thus proportional to n(p)).

We get the linear system to be inverted by writing that
all partial derivatives of S with respect to all constants
Ai should vanish. This system is degenerated, since if a
set of constants A1, ..., An is solution, the same set with
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a constant K added to all the Ai is also solution. This
degeneracy is lifted by adding the requirement that the
mean of the constants Ai vanish.

We first use the nominal scanning strategy of
PLANCK, with a spin axis kept rigorously anti-solar, and
check that the accuracy of the inversion does not depend
on the input offsets for the circles, but does improve with
the resolution. For each simulation, the data of the mission
are stored as a table of Ni scan circles of Nj samples each.
For a simulation with a 1 degree resolution, Ni = 421 and
Nj = 339 for a 14 month mission and a 140◦ scan diame-
ter. We evaluate the amount of striping by calculating the
mean value of the signal on each scan circle, and comput-
ing the square root of the variance of the collection of Ni
numbers so obtained. This is denoted as σstripes.

For a 1◦ resolution simulation, we generate a 421×339
element table of Gaussian random numbers with rms 1.
This simulates the white noise of the mission. To this noise
we add offsets which simulate the low frequency drifts.
Various types of offsets were considered: a) no offset, in
order to test that the method does not add striping where
there is none; b) a linear drift of 100i/Ni, where i is the
index of the circle and Ni the number of circles; c) a si-
nusoidal drift of 100 sin(2πi/Ni); d) a sequence of random
offsets with an rms of 100 (hundred times the rms of the
noise); e) a random walk of rms 10 per step; f) in order
to check the intrinsic precision of the inversion, we try to
recover the offsets of the random walk without adding any
white noise.

In order to be able to compare the performance of the
method in all cases above, let us consider one specific re-
alization of the white part of the noise here, and add to
it the offsets described above to get five different “noise
signals”. In all cases a) through e), the value of σstripes

after the inversion is 0.0412, which proves that the accu-
racy does not depend on the offsets to be corrected for to
any significant level. It is interesting to realize also that if
there is no offset, the expected value of σstripes before any
inversion just from sample variance is 0.0543 (and on the
particular noise realization we used here it happened to
be 0.0522), so that the method does not only remove the
striping due to drifts in the offsets due to low-frequency
noise if any, but does even readjust to some extent the vari-
ations in the average level of the circles due to the sample
variance of the average of the Nj points on a circle. This
is anecdotic, of course, but does show that no additional
noise or bias is generated in the readjusting process - in
fact, for a 14 month mission the method partly suppresses
low frequency components of the white noise itself. It is
worth stressing that the success of the method is due for a
large part to the fact that all the points of any circle con-
tribute to the evaluation of the value of its offset, and not
only two points at the North and South ecliptic poles. The
precision of the inversion (performed in double-precision)
is evaluated from the results of case f) above, for which
we get a totally negligible residual striping of 3.83 10−7.

In order to check that the accuracy does indeed de-
pend on the resolution, we repeat the simulation of a)
through e) for resolutions of 2◦ and 5◦. In these cases, the
value of σstripes after the inversion is 0.0549 and 0.0800 re-
spectively, independent of the original stripes again, and
below the value we get from sample variance on the orig-
inal data. Note that the weight given to each term in the
least-square sum above is critical to reach this accuracy.
For instance, if we put the same weight to each term, too
much importance is given to points on the circles that are
close to the north and south ecliptic poles (because they
are “seen” by many more circles than the ones in the eclip-
tic), and some residual striping of the order of magnitude
of the white noise per pixel remains, because the value of
the offset recovered depends most on the realization of the
white noise at points near the poles.

We tried this inversion scheme with all kinds of off-
sets, with various kinds of scanning strategy and different
mission durations (from 3 to 14 months). In all cases the
inversion works extremely well. To be a little more illus-
trative, we show images of a noise generated according to
method e) above, for a 1 year mission, at the resolution of
1◦, reprojected on the sky, with no destriping treatment
(Fig. 6) and after destriping (Fig. 7). For this simulation
we used a scanning strategy for which the spin axis has
been made to oscillate sinusoidally out of the ecliptic with
an amplitude of 15◦ and a frequency of 8 oscillations per
year, in order to maximise the sky coverage. Note the dif-
ferent scales for the amplitude of the structures that can
be seen. No striping whatsoever remains on the map after
the treatment.

3.2. Improving the method

3.2.1. Modelization of nominal PLANCK HFI noise

Whereas it has been made clear that our method is satis-
factory to remove the striping due to low-frequency noise
off maps obtained by PLANCK in the case where the knee
frequency of the noise is low enough that all significant
low-frequency noise appears in the form of different off-
sets for different circles on the sky, it is worth mentioning
that if there is significant low-frequency noise power at
frequencies higher than the spinning frequency then the
method above may not be sufficient anymore: After rela-
tive offsets are readjusted, the next effect of low-frequency
noise is to add very low level drifts along individual circles,
as shown in Fig. 4 and Fig. 5, and one should investigate
whether or not these fluctuations may cause a problem.

It is not easy to generate degraded resolution maps
that preserve exactly both the visual aspect (i.e. do we
see striping or not) and the statistical properties of the
noise for real 1/f noise on all scales. For instance, the rms
amplitude of low-frequency noise relative to white noise
depends on the sampling frequency (the variance of white
noise is proportional to the sampling frequency, and the
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Fig. 6. Map of reprojected noise and offsets if no processing of the signal is done. The map is heavily striped. This should not
be interpreted as a noise map for PLANCK, as at least some offset readjustment can be made before reprojecting. For this data
set, the average level of circles has been left to drift some hundred sigma away!

variance of 1/f noise diverges proportionnaly to the loga-
rithm of the sampling frequency). For these simulations,
we decide to scale both the white noise and low frequency
noise rms to their rms values for 10 arcminute pixels, in-
dependently of the size of the pixel of the simulation (here
1 square degree pixels). The next problem is that for 1 de-
gree resolution simulations, instead of one circle every two
hours, we generate one circle every day. However, we wish
to preserve the possible correlations between consecutive
circles of the simulation. Thus, we have to face the problem
that either the correlations between consecutive circles is
right, or the relative value of the offset between circles
taken at a 1 day time interval is right. As the paragraph
above demonstrates that relative levels of the circles do
not play a role in the accuracy of the readjustment of the
offsets, and as offsets will not drift too far away because
they will be readjusted by the instrument anyway, I de-
cided, in this next part of the simulations, to preserve the
correlation between consecutive circles rather than their
relative offsets.

Thus, a time sequence for the noise is generated by the
following method: for a 1 year mission at a 1 degree res-
olution, we need 361 circles (so as to re-observe the first
circle at the end of the mission) of 339 points each. Each
of these circles is obtained from averaging 120 scans, and
thus we need to generate a noise of almost 15 million data
points. We wish that these data points preserve the rela-
tive rms amplitudes of low-frequency noise to white noise
of the full 10 arcminute resolution maps, i.e. we do not
smooth the noise down to the lower resolution, but rather
affect to each 1 degree by 1 degree pixel the noise of its
“central” 10 arcminute by 10 arcminute pixel, which cor-
responds to reprojecting on a 1 degree resolution map a
subset of the 10 arcminute resolution pixels. This method
preserves best the relative rms of the low-frequency resid-
ual noise and the white noise part of true full resolution
maps.

Generating a 15 million sample dataset with a “true”
1/f spectrum is out of the reach of the computer I used.
In order to generate the 1/f noise, an under-sampled
(by a factor 32) white noise with a unit variance was
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Fig. 7. Map of reprojected noise and offsets after signal-preserving destriping (see text). Compare with Fig. 6 (note the different
colour scale!)

generated, converted to Fourier space (by FFT) where
it was multiplied by (fknee/f)α/2 (with the appropri-
ate rescaling to take into account the effect of under-
sampling). Then we compute the inverse FFT and interpo-
late between the samples, add consecutive circles by packs
of 120 to get a 361×339 array of data points (correspond-
ing to 361 circles), and add to it a randomly generated
array of 361 × 339 data points with a Gaussian statistic
and a rms of 1/

√
120. We then re-scale everything conve-

niently by multiplying by
√

120. We check that the relative
rms values and the visual aspect of the circles obtained in
this way are correct by comparing with circles obtained
from fully fast-sampled simulated low frequency noise of
a few circles only.

First, let us generate such a noise for nomi-
nal low-frequency noise parameters for the PLANCK
SURVEYOR High Frequency Instrument, i.e. fknee =
0.01 Hz and α = 1, and readjust the offsets by the method
of the previous sub-section. Again we use the scanning
strategy for which the spin axis has been made to oscil-
late sinusoidally out of the ecliptic with an amplitude of
15◦ and a frequency of 8 oscillations per year. The re-
sulting output noise map is shown in Fig. 8. No striping

whatsoever is apparent on the map, and the increase of
the rms of the noise is about 0.47%. In order to check the
effect of the out-of-ecliptic motion, we do the simulation
with the same realization of the noise but with a nominal
anti-solar spin axis. In this case the increase in the rms
of the noise is 0.49% (no significant difference). Repeated
simulations with different noise realizations show that the
small difference is always in favour of sinusoidal out-of-
ecliptic motion.

In their 1996 paper, Janssen et al. computed the max-
imum noise increase along a scan circle. Adapted to our
notations, their formula can be written as

Fmax '

(
1 +

Tspinfknee

m
(2 lnm+ 0.743)

)1/2

(4)

where m is the number of independent data points along
one circle. For PLANCK, m = 2034 for a 10 arcminute
resolution, Tspin = 60 sec., fknee = 0.01 Hz, and we get
Fmax ' 1.01. The average additional noise that we find
by simulations is about half the maximum noise increase
along one circle they predict (for diametrically opposed
pixels), so our result is fully consistent with theirs. This
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Fig. 8. Map of reprojected simulated 1/f noise, fknee = 0.01 Hz, α = 1.0, after correction by simple offset readjustment. The
very-low level residual striping can not be distinguished by eye. This is a 1-degree resolution projection of what the processed
PLANCK all-sky noise could look like. The relative standard deviations of reprojected white noise and reprojected residual
striping are those of a 10 arcminute resolution mission (see text)

is consistent with most of the additional noise being due
to small drifts along individual circles.

In order to give an estimate of the order of magnitude
of striping and the statistical properties of the noise, we
show, in Fig. 9, plots of cuts through the noise map of
Fig. 8. On both panels of Fig. 9, total noise is represented
with diamonds, and the component of noise due to residual
low-frequency drifts (obtained by computing the difference
between the output map of Fig. 8 and the map obtained
by simple reprojection on the sky of the white part of the
noise used for the simulation only) as a plain line. In these
plots, although one point only is plotted per degree, the
spread in represented points is typical of what we would
get in a 10 arcminute resolution map, not a smoothed map
with a 1 degree resolution. The top panel corresponds to
a vertical cut in the middle of the map, and the bottom
panel to an horizontal cut in the middle of the map (thus
perpendicular to the expected striping, if any). In both
cases the total contribution of striping to the total noise
is very small. The structure of residual low-frequency noise
is not similar in both directions, which can be understood

from the direction of scans. The small structure on the plot
of residual low-frequency noise in the middle of the top
panel is characteristic of very-low level striping. Finally,
it is obvious from the distribution of the total noise that
some regions of the sky are integrated more than others
(as the region around ecliptic longitude λ = 0◦ and ecliptic
latitude β = −45◦).

3.2.2. Monitoring unforeseen instabilities

Now we want to investigate what would happen if the low
frequency noise were much worse than expected. The pur-
pose of the following simulations, using parameters that
are unrealistically pessimistic for the PLANCK HFI, is
to show that the conclusions of the previous paragraphs
do not depend drastically on noise assumptions, and that
even unforeseen instabilities can be monitored quite well
with PLANCK. Here we assume that some unwanted tem-
perature fluctuations (for instance) generate low frequency
noise with the parameters of fknee = 0.1 Hz (ten times
the nominal!) and α = 2.0 (same parameters as were used
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Fig. 9. Cuts through the noise map of Fig. 8. The top panel
is a vertical cut at 0◦ ecliptic longitude, and the bottom panel
an horizontal cut along the ecliptic plane. The plain line rep-
resents residual striping, obtained by computing the difference
between the map of reprojected total noise after inversion, and
the map of reprojected white part of the noise only. Diamonds
correspond to the total reprojected noise. The structure due
to striping is very small compared to the total noise, and the
noise r.m.s. increase due to this residual striping is 0.47% on a
10 arcminute resolution map of the sky

to generate the plots of Figs. 2-5). The resulting increase
in the noise standard deviation of the map (scaled to
10 arcminute pixel size as explained above) is 7.5%. This
is not much, but it is significantly larger than the value of
0.5% obtained with nominal HFI noise. Because the excess
power is not white, it could be distinguished on the maps,
especially at degraded resolution. For instance, within the
framework of standard assumptions of physical cosmology
this could cause trouble for the estimation of the prop-
erties of primordial supra-horizon fluctuations, which are
important for constraining the models of inflation. It could
also be annoying in pattern recognition methods looking
for discontinuities generated by cosmic strings. Finally,
some optimal foreground separation methods rely on sta-
tistical methods which use prior knowledge of the spec-
trum (as a function of scale) of the various astrophysical
components (i.e. cirrus clouds, primary CMB, free-free,
synchrotron, etc...).

In order to get rid of this residual striping, we can try
a more sophisticated treatment. The idea again is to find
a method which does not depend on the real signal, and
thus estimates low-frequency components by using signal

differences on common pixels. To do so, we can adapt the
above method: instead of fitting just one constant for each
data circle, we fit a function with more parameters, so that
along a scan circle i we may write

ni(j) ∼
∑
k

Aikfk(j). (5)

In the equation above, j indexes the samples along
the data circle, and the functions fk(j) are vectors of
a basis of functions on which to decompose the noise
ni(j). Typically, the set of functions fk can be sines and
cosines (Fourier modes), or polynomials, or other well-
chosen functions. The sum we want then to minimise is:

S(Aik) =
∑
p∈sky

n(p)∑
i1=2

i1−1∑
i2=1

wi1,i2 × (δ(i1, i2)− F1 + F2)2 (6)

where

F1(i1, j1) =
∑
k

Ai1kfk(j1(p)) (7)

and

F2(i2, j2) =
∑
k

Ai2kfk(j2(p)) (8)

where j1(p) and j2(p) index the samples on circles i1 and
i2 respectively for which pixel p on the sky is observed.

In this framework, for instance, we can take advan-
tage of the fact that the most interesting property of low-
frequency noise is that it does not have significant high
frequency power. Because of that, low frequency noise it-
self can be estimated by sampling it at a much lower sam-
pling frequency than the true signal. Thus, it seems to be
a good idea to use as a basis of functions for noise esti-
mation along one circle a set of a few “top-hat” functions,
corresponding each to a constant on a fraction of a circle
only.

Using the same realization of low-frequency and white
noise, we inverted the data set by adjusting more than one
constant for each circle. We do it for two constants (i.e.
one for each half-circle), three constants (one for each third
of a circle), and four constants (one for each fourth of a
circle). We performed the inversion also using 1st through
3rd degree polynomials.

Table 1 gives the noise rms increase on maps in all the
cases discussed above. Maps, too numerous to be shown
here, can be provided by the author upon request. It is
clear that the residual striping can be reduced substan-
tially by this method (and the more so at high resolution,
as more points are available to estimate individual param-
eters of the fitting functions fk, whereas no more functions
are needed at high resolution than at low resolution to es-
timate low-frequency structures in the noise). 4 constants
per circle instead of one is the best that could be done
because of computational limitations. For full-resolution
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data sets, with a good computer, going to 10 constants
or so should be possible and should improve the fit sig-
nificantly. This method, used on very pessimistic noise
here for illustrative purposes, could also be applied to de-
stripe further full-resolution maps obtained with nominal
PLANCK HFI noise, if one wished to do so.

Table 1. Increment of noise rms from residual striping for
very pessimistic low-frequency drifts (assumed knee frequency
fknee = 0.1 Hz and spectral index α = 2.0). Different sets of
fitting functions have been used to remove striping effects (see
text). Polynomials seem to perform better up to 3 constants
per circle (second degree polynomial). This can be understood
from looking at the shape of drifts along circles (Fig. 5). A
polynomial of degree 3 is worse as far as reducing the rms of
the noise is concerned for 1 degree resolution simulations. This
is due to insufficient constraints and to the fact that the weight-
ing of the terms in the least square sum is not adapted to such
functions, but to step functions. In fact the 3rd degree poly-
nomial induces a dipole on the sky, which can be understood
as high degree polynomial fits have a known tendency to oscil-
late between the data points that carry the most weight. Most
of the additional power comes from this dipole, although it is
much lower in amplitude than the “real” physical (cosmolog-
ical or Doppler-induced!) dipole. Maps can be made available
by the author upon request

FIT steps polynomials

1 constant + 7.5% + 7.5%
2 constants + 3.3% + 2.9%
3 constants + 3.2% + 2.3%
4 constants + 2.9% + 6.3%

For each noise spectrum there must be an optimal set
of functions fk to use. For instance, a 1st degree polyno-
mial is better than two constants per circle for very steep
noise spectra, as most of the low-frequency noise contri-
bution comes from very low frequencies. For each noise
spectrum, there is also an optimal number of functions fk
to use, as the more functions one uses, the less constraints
one gets on each of the functions. These optimal solutions
are yet to be found.

4. Discussion and comments

4.1. Finding an optimal scanning strategy?

It is clear that for the methods discussed above to work
there must be some optimal way of scanning the sky. The
scanning strategy sets the position of the points of inter-
section of the different circles described by the main beam
of PLANCK SURVEYOR.

For instance, scanning the sky with great circles while
the spin axis is kept rigorously anti-solar insures that ev-
ery circle crosses every other circle in exactly two points,

namely the North and South ecliptic poles. For this scan-
ning strategy, pixels close to the ecliptic are seen by only
one circle (obtained from adding together a great number
of scans, 120 scans for PLANCK) every 6 months.

If instead of great circles the main beam scans 140 de-
gree diameter circles while keeping the spin axis anti-solar,
as for the nominal PLANCK mission, there is no com-
mon “reference” pixel seen by all circles. Circles cross each
other on points that are spread out all over their length.
Circles observed within a small time difference cross at
high ecliptic latitudes. Circles observed at a time interval
of about 140 days cross near the ecliptic plane, as shown
in Fig. 1. For readjusting offsets, this scanning strategy
should be superior, as all the pixels along one circle con-
tribute to the evaluation of the offset of that circle.

This is not the case for great circles, and as empha-
sised by Wright (1996), the estimated offset for a great
circle that crosses reference circles in only two points will
depend on the realization of the noise at these two points.
Of course, one could rely on more than two points, by
using also points along the scan close to the pole which
overlap substantially (and thus compare measurements in
more extended “polar caps”). Some significant improve-
ment can probably be obtained in this way, as after all
consecutive great circles have a significant area in com-
mon, but one may have to worry about high spatial fre-
quency signals on the sky (especially point sources) for
fields of view that do not exactly coincide. Iterative cor-
rection of oversampled maps could be a solution, but this
may lead to complications. Finally, this scanning strat-
egy using great circles with anti-solar spin axis does not
allow the natural improvement of the method where the
low-frequency noise realization along each circle is fitted
by sampling it at its own Nyquist frequency, as there are
points of the circle (near the ecliptic plane) which are not
seen by any other circle (here we talk about circles ob-
tained by adding consecutive scans, not about individual
scans).

In both cases, the destriping method can be improved
by allowing the spin axis to move away from the anti-solar.
This is especially true if great circles are used to scan the
sky, as then circles would not cross other circles in two
points only. A small displacement of the spin axis of a cir-
cle along the ecliptic makes it cross other circles near the
ecliptic poles, and a small displacement of the spin axis
perpendicular to the ecliptic makes the circle cross nearby
circles near the ecliptic plane. Thus, in order to insure that
all points along a circle have other circles to be compared
to, a reasonable solution as far as destriping is concerned
could be to move the spin axis on circles around the anti-
solar. This has the additional characteristic that the sun
aspect angle is kept constant, which may help monitor-
ing the thermal stability of the payload if the satellite is
reasonably symmetric around its spin axis. Sinusoidal or
tooth-saw motion out of the ecliptic while the spin axis
turns around the ecliptic are also possible solutions.
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It has been argued by some authors (Wright et al.
1996) that based on the inherent difficulty of stabilising
the sensitivity of an instrument to enough precision, it
is desirable for the raw data to be collected in differen-
tial form. However, we would like to stress that even dif-
ferential measurements can potentially suffer from low-
frequency noise, because any asymmetric source of fluc-
tuations (as for instance thermal fluctuations of optical
elements which are not commonly shared) generates low-
frequency instabilities in the measurements. Differential
measurements are not just desirable: in a way or another
they are, on short time scales, a necessity for radiometers,
less stable than bolometers by orders of magnitude for
CMB applications. These authors proved that it is possi-
ble to invert megapixel differential data. This task may be
much harder if in addition some unforeseen low-frequency
drifts contribute to the data stream.

Finally, whereas the method works better if the spin-
axis is not kept rigorously anti-solar, it should be kept
in mind than moving the spin axis could generate in-
creased thermal instabilities of the payload or increased
sidelobe contamination. For PLANCK, it has been shown
that thermal specifications could be fulfilled if this angle
does not exceed 15 degrees, which is sufficient for destrip-
ing and for sky integration time optimisation if desired.
The freedom to move the spin axis also allows one to read-
just the scanning strategy after the preliminary analysis
of the first few days or weeks of data if necessary. This
flexibility is a powerful tool for monitoring systematic ef-
fects.

4.2. Comments on the method

Our method has the very nice property that the correction
of low frequency drifts does not require the inversion of
a huge matrix, contrarily to methods which try to make
a least square fit of both the signal on all pixels of the
sky and all additional parameters as those which allow for
the correction of low-frequency drifts. A (relatively!) small
matrix of a few thousands by a few thousands needs to be
inverted, which is an easy task for modern computers.

However, the method relies heavily on the assumption
that different measurements on the same pixel of the sky
should generate the same “useful” signal, apart from dif-
ferent contributions of low-frequency drifts. If this is not
the case, it is still possible to fit the noise in much the same
way, but this will require the inversion of huge matrices of
typically a few million by a few million entries. Iterative
methods make this task possible if there are not too many
non-vanishing elements. Potential sources of trouble in-
clude far sidelobe straylight, which depends on the orien-
tation of the satellite and on the position of bright sources
in the sky, polarisation (for detectors sensitive to polari-
sation, because again what is measured on a given pixel
with a polarisation-sensitive detector depends on the ori-
entation of the satellite, as shown in Fig. 10), and all other

potential systematic effects. The remark about the com-
plications induced by the measurement of polarised light
is also true when one wants to invert differential data (e.g.
Wright et al. 1996). These authors’ method for inverting
the differential signal expected from the MAP satellite
also relies on the assumption that the useful signal from a
given pixel is independent of satellite orientation. This as-
sumption is not correct for polarisation sensitive measure-
ments, obviously, and again this can make the inversion
significantly harder than expected.

Bolometers are not sensitive to polarisation unless one
places a polariser in front of them.

CIRCLE 1

CIRCLE 2

COMMON PIXEL

Fig. 10. Representation of the effect of polarisation-sensitive
measurements on the comparison of relative measured signal
on different scans. Small circles with arrows inside represent
different fields of view of the instrument (main beam). On the
common pixel in the middle of the figure, measurements on dif-
ferent scans do not see the same polarised light, as indicated
by the arrows. This may complicate attempts to measure po-
larisation and/or the inversion of polarised differential data

5. Conclusion

In this paper, some aspects of the expected statistical
properties of the noise for the future PLANCK satellite,
both on data streams and on output maps, have been
analysed. It has been shown that for the bolometer in-
strument of PLANCK, no significant striping on the maps
is expected due to low-frequency noise only for the nom-
inal knee frequency of the noise of 0.01 Hz, as a simple
destriping method can remove low-frequency noise effects
on maps. For the PLANCK HFI the increase in the noise
rms on destriped maps is expected to be less than half a
percent. Even if the low-frequency noise were much worse
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than expected, correction for its effects are possible with
the scanning strategy of PLANCK, contrarily to what has
been suggested by Wright (Wright 1996).

However, we believe that testing the extraction of cos-
mological information using simulated noise maps is prob-
ably one of the best way to quantify the exact conse-
quences of instrumental effects such as striping, and con-
tinuing efforts should be made towards simulating realistic
noise maps in the future.

An optimised scanning strategy must be devised by in-
cluding simulations of most foreseen systematics. We be-
lieve that this optimum can be found within the orbit
specifications for PLANCK, which minimise most of the
potentially harmful systematic effects.
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