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Abstract. Many algorithms separating or detecting
groups of similiar objects (for example the extraction
of groups lying in a color–color–diagram) are based on
two statistical methods: the Kernel Method (Silverman
1986) or the Likelihood Statistic (van der Waerden 1957).
These standard methods have one or more restrictions
(e.g. known number or differentiability of the groups, . . . ).
We present here a new powerful algorithm and show re-
sults worked out with artificial data sets.

The algorithm is based on Recursive Restoration
Methods (neither on the Likelihood Statistic (Sutherland
& Saunders 1992) nor on the Kernel Method (De Jager
et al. 1986)) and allows to detect substructures in a data
set, even if they are overlapped or superimposed by any
kind of dominating main structure. In comparison to the
other methods mentioned above there are no restrictions
concerning the form and the dimension of the components
lying in the data set.

The algorithm is easy to handle and therefore opens a
wide range of applications for many fields of science (see
Boller et al. 1992).
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1. Introduction

Due to new, fast detectors, an increasing amount of in-
formation with more and more parameters has to be han-
dled in nearly every branch of science. The extensive infor-
mation is bound in multidimensional data sets and often
consists of mixtures of groupable subsets and errors that
might for example be explained by the instruments’ or
measurement uncertainties.

The Infrared Astronomical Satellite (IRAS), started
in 1983, detected around 245.000 sources. The Deep Near
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Infrared Southern Sky Survey (DeNIS, Epchtein et al.
1994), started in 1995, will reach a number of objects
which is estimated to be around 5 108. Such data sets
consist of different types of objects, such as galaxies, stars
or planetary nebulae. Furthermore the instruments regis-
ter multiple properties of each source (such as coordinates,
different fluxes or magnitudes). One of the main tasks is
now the exact separation of different types, by means of
known properties, and to get statistical information about
objects without such collected properties.

The algorithm presented here is able to separate
different structures and to give a probability function
which indicates if a source is part of one of the structures.

In order to obtain assumed substructures it is possible
to model the superimposing main structure with any kind
of artificial form (for example multidimensional Gaussian
distributions) as well as to use natural subsets (for exam-
ple obtained by special information about a part of the
whole data set) as a main structure. The algorithm sub-
stracts this main structure from the whole data set, the
remaining part (thereafter called residuals) opens the view
to eventually existing covered structures.

It is possible to improve the model of the main com-
ponent by using the algorithm in an iterative way.

2. Actual methods used

In order to get the number, form and position of the
different structures, as well as an estimation of the error,
many solutions exist. Most of these solutions represent a
specialization of two main methods:

In many cases the Maximum Likelihood–method (ML–
algorithm) is used to estimate unknown parameters
(Sutherland & Saunders 1992). Boller also uses an algo-
rithm based on the Likelihood Satistic and works with
four-dimensional (artificial) Gaussian distributions.

The density–estimation is another way, often used, to
estimate parameters or shapes of distributions building a
mixed distribution. One of the algorithms based on the
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density estimation is the Kernel-method (De Jager et al.
1986).
The specialized solutions requires one or more restrictions
which can affect for example:

– the number of substructures,
– special parameterizable models such as Gaussian dis-

tributions,
– differentiability or
– the number of dimensions.

In order to categorize objects in a color–color diagram,
the most common method is described for example in
Walker & Cohen (1988) and Walker et al. (1989). Having
a sample of some already identified objects, they try to
calculate a distribution–function using different methods.
This function often has its base in the normal distribution.
Depending on the presentation of the results, the following
is often given:

– The parameters of the distribution functions for each
type of found group of the diagram.

– A box (drawn in the diagram) giving the maximal lim-
its of the regions where such a type of object should
be found.

Walker et al. (1989) give a diagram with boxes speci-
fying the limits mentioned above. Further a table is given
containing the parameters µ and σ of Gaussian distribu-
tions for many types of objects and for each dimension of
the color–color diagram ([12]−[25], [25]−[60], [60]−[100]).

The disadvantages of such a kind of presentation are
the following:

– Referring to the table of Walker et al. (1989) the
parameters are presented only for one dimensional
Gaussian distributions. Building a multidimensional
Gaussian distribution with these parameters leads to
errors because of a missing skewness–factor. Further,
the relations between the different Gaussian distribu-
tions are not given. Therefore it is not possible to cal-
culate contamination ratios or to clearly distinguish
between the different groups.

– The graphical presentation with boxes has the same
disadvantages as described above. Furthermore the
limits never represent natural regions.

The new algorithm can be used with natural regions.
It is not necessary to adapt any distribution function to
the data set. In order to investigate for example the oc-
cupation zones (OZs) of different types of objects in a
color–color–diagram, two approaches are conceivable:

1. Use the 4580 so–called unassociated IRAS sources de-
fined in Walker & Cohen (1988) as data set I. In or-
der to calculate the underlying substructures, use the
same sets si of identified objects as given in Walker
et al. (1989). Using the algorithm with I and si the re-
sult will be a distribution function which gives an idea
concerning not only the regions where such a group of

objects should be found but also the contamination of
the different groups.

2. In case of a large dispersion of a group it is possible to
use instead of si the Gaussian parameters as starting
values.

We are currently investigating the capabilities of the
algorithm respecting that kind of color–color–diagrams
(Kienel & Kimeswenger, in preparation).

3. The algorithm

In this chapter the basic steps of the algorithm will be
described. The mathematical details will be shown in the
appendix. The following formulae are given in order to
have a clear mathematical definition. The whole data set
has to have the following form:

I(x) =
n∑
i=0

gisi(x) + err(x)

s, err : Rm −→ Rm

n ∈ N0,m ∈ N ; gi ∈ R, x ∈ R
m.

This equation can be split into two parts in order to
be able to separate one component from the rest of the
data set I:

I(x) =
∑n
i=0 gisi(x) + err(x)

= hf(x) +
∑n
i=1 gisi(x) + err(x) (1)

f(x) represents the form and position of the overlap-
ping main structure. si(x), i = 1, .., n represents the sub-
structures and h as well as gi represent a kind of amplitude
or multiplier of the structures.

The following inequalities form the restrictions:

f(x) ≥ 0 and si(x) ≥ 0 i = 1, n ∀x ∈ Rm. (2)

These restrictions normally do not represent a handicap
due to two considerations:

1. All the data sets based on histograms (e.g. counting
values) have always positive values.

2. It is often possible to shift the data sets to values larger
than zero.

The algorithm needs the following main information:

– The whole data set I(x).
– A first estimation f0(x) of f(x) of the superimposing

or overlapping main structure.

The estimation of f(x) concerns only the form and
position but not the intensity assumed in the whole data
set. Further parameters of the algorithm are flags which
indicate whether one of the sets has to be smoothed or
not.

The algorithm represents an iteration performing the
following steps:
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3.1. The preparation–phase

Depending on the flags mentioned above, smoothed ver-
sions of the sets I and f will be built (I → Is and
f0 → f0s). With these sets, errors (e.g. so–called outliers)
will be eliminated.

The next step consists in the calculation of an offset
Of . If an offset over the whole data set can be found, this
offset has to be considered in the following calculations.

Of = max(min(Is(x)), 0). (3)

Referring to Eq. (1) the algorithm has to estimate the
parameter h. In order to get a starting value h0 for the
iteration, h0 will be calculated as follows:

h0 = max(I(x))Ferr, Ferr ≥ 1 ∈ R. (4)

The value of the parameter Ferr depends on the esti-
mation of the error in the data set. The higher the error
(resp. the ratio between the error and the data set) will
be assumed, the higher the value of Ferr has to be.

After these preparations the iteration starts.

3.2. The iteration

In order to get hi+1, we calculate a function which repre-
sents a ratio between the whole data set Is and the esti-
mated main structure hif0s:

G(x) =

{
Is(x)−Of
hif0s(x) − 1 ↔ f0s(x) > 0

any value ↔ f0s(x) = 0.
(5)

The values of G lie between −1 and any value > 0
(cf. Appendix, points 1 and 2). In these regions where no
substructure takes part in the data set, and if the real am-
plitude h has been found, G(x) = 0. The value increases in
these regions where the substructures become higher than
the estimated main structure. This can lead to extremely
high values in the regions where the main structure is
much lower than the substructures and the errors (mostly
the edges of f0s). In these regions where the estimated
main component is higher than the substructures the val-
ues of G lie between 0 and 1 (G ∈ (0, 1)) (cf. Appendix,
point 3).

This function is the basis of the so–called correcting
parameter a, which represents a kind of a weighted aver-
age of special values of G. Two parameters are introduced
which select the best values of G in order to build the
parameter a:

1. The higher the value of f0 the more it influences the
main structure of the data set I. A parameter Hl takes
this fact into account. If there are no substructures, the
value of Hl could be set to zero.

2. A parameter Gl is introduced in order to exclude all
values of G which exceed a certain value.

Further, a weighting function wa favours these values
of G where f0 has its highest values (e.g.

√
f0s).

Based on G, Hl, Gl and the weighting–function wa,
the correcting parameter a has the following form:

a =

∑
x∈M

G(x)wa(x)∑
x∈M

wa(x)
(6)

M = {x : f0s(x) > Hl and G(x) < Gl} .

With this parameter, a first improvement of the am-
plitude hi can be reached:

hi1 = hi(1 + a).

After the calculation of hi1 it is possible to build a
new set Rres by substracting the estimated main struc-
ture from the data set I. There should not remain values
less than zero due to condition 2. If they exist, then the
main structure has been overestimated. Therefore the set
Rres can be used to calculate a second parameter b which
corrects such an overestimation:

b =
1

n

∑
Rres<0

Is(x)

hi1f0s(x)
(7)

n represents the number of elements of Rres(x) < 0. The
new amplitude hi+1 is now calculated as follows:

hi+1 = hi(1 + a)b (8)

3.3. The end of the iteration

The end of the whole iteration is determined by one of the
following three factors:

– The difference between hi and hi+1 is smaller than a
given limit.

– The variance of all iterated amplitudes is lower than a
given limit.

– The variance begins to increase. In this case, the form
and/or position of the main component is wrong.

The second and third condition are necessary for the
following reasons:

It is possible, that the algorithm does not converge
to an exact value. If the algorithm converges to two fixed
values and pends between these values (near the solution),
the variance stops this pending state after a certain time.
In case of wrong form or position of the main component,
the variance increases after some iterations and does not
converge.

3.4. The advantages

– As one of its results the algorithm gives a data set
which gives information on the probability of every
point of the investigated set (Boller et al. 1992 gives
only a probability for the whole set).

– The input-sets are very easy to generate (see Kienel
1996).
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– For using the algorithm it is not necessary to be a
specialist in mathematics.

– In ordrer to reach the result, the algorithm needs only
a few CPU-seconds on out-of-state desktop worksta-
tions.

4. Examples

Three examples with generated data sets demonstrate the
use of the algorithm. The first two examples deal with one–
dimensional Gaussian distributions. The third example
handles two–dimensional Gaussian distributions as over-
lapping main data set and several blocks as underlying
substructures. All data sets are adapted with a Poisson–
distributed error.

In order to be able to present the principle of the al-
gorithm only examples using artificial data sets will be
presented. The detection of structures in color–color dia-
grams by means of the algorithm will be presented in a
further paper.

4.1. A small subcomponent

Two Gaussian distributions build the data set I. Table 1
gives the parameters. The last column shows the intensity
of each component (Int =

∑
ai i = 1, 2). The intensity of

I equals to 4693 (IntI =
∑
a1 +

∑
a2 + err, the adapted

error does not change the sum of the intensities).

Table 1. The parameters of the building components of I

µ σ h Int

a1 90 15 120 4512
a2 99 4 18 181

As an estimation of the superimposing main structure,
a Gaussian distribution f0 is generated with the same val-
ues (µ, σ) as a1. The intensity of f0 is set to 1. Figure 1
shows the sets I, a1 and a2. The algorithm has as input
values the sets I and f0. Set I has to be smoothed in
contrast to the generated set f0.

The algorithm runs 4 times and calculates as intensity
of the main structure F4 4332 (4% less than the real in-
tensity of a1). The intensity of the remaining residuals R4

reaches 361.
The result concerning the whole data set, F4 + R4,

demonstrates that the algorithm does not change the in-
tensity during the calculation: the algorithm is intensity–
invariant.

The big difference between the real and the estimated
substructure (100%) arises due to the fact that the in-
tensity of the main component is 25 times(!) the intensity
of the substructure. If the algorithm reaches the correct
intensity of the main component up to 1% and due to

Fig. 1. The main data set I together with the building com-
ponents a1 and a2 (broken lines)

the invariance of the algorithm, the difference has to be
exactly 25% between the original and the calculated sub-
structures.

After the iteration, a probability function p is calcu-
lated in order to be able to distinguish between an error
and the real substructure. Actually, this probability func-
tion only takes into account a ratio between an estimated
maximal error (c

√
I), the real data set I and the found

substructure. Figure 2 displays the found substructure R4

and the function p (which is multiplied with the factor 10
in order to be able to compare it with R4). p has its high-
est values in the regions of the real substructure ai and at
the edges of the figure.

found residuals R4

real substructure a1

probability function p (right scale)
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Fig. 2. The residual R4 together with the probability func-
tion p
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4.2. Two clusters of similar size

The second example deals with the problem often found in
astronomy: Two clustars with about the same size and a
non empty intersection. Again two gaussian distributions
were used.

Table 2. The parameters of the building components of I

µ σ h Int

a1 80 20 40 2005
a2 120 20 40 2005
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Fig. 3. Top: The data set I using two clusters of similar size
together with its building components a1 and a2 (broken lines).
The left component a1 is used as “main structure”. Bottom:
The residual R4 using two clusters of similar size (solid line),
the building function a2 (thick broken line) and the propability
function (thin broken line)

The residuum represents extremely well the building com-
ponent a2. One should remember, that the algorithm does
not know anything about the form of this function a2.

4.3. The covered E

The second example illustrates further capabilities of the
algorithm. On the one hand, different forms build the
set. The superimposing main structure is built with two
Gaussian distributions, whereas the covered structures are
built with several blocks. On the other hand this example
demonstrates the use of the algorithm in the two dimen-
sional case.

A so–called block is a kind of a two dimensional
trapecium with the following parameters:

height

a

b

Fig. 4. The defining parameters a, b (a ≤ b) and h (in one
dimension)

The original set is shown in Fig. 5. The intensity–ratio
between the main component and the subcomponent is
about 90 : 1. The substructure has a constant height of
8 units (cf. Fig. 6), the maximum height of the real main
component is at 409.6 units and consists of two Gaussian
distributions, each of them having a height of 240.0 units.
The total intensity of the main component has 3114430
units.

Fig. 5. The real structure I (the main component together
with the substructure and the Poisson noise). A visual inspec-
tion does not show any sign of the hidden E

After 2 iterations, the algorithm achieves the following
result: the found height of the main component has 410.4
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units (+0.20%), the corresponding intensity has 3135670
units (+0.68%). The intensity of the achieved residuals is
at 23464.5 units (cf. Figs. 7 and 8), while the intensity of
the real substructures is at 34272 units.

Fig. 6. The substructure built with 4 blocks

Fig. 7. The estimated residuals including the remaining noise

5. Conclusion

By examining the literature we found that many of the
algorithms used in astronomy as well as in other fields of
science are very complicated and need profound mathe-
matical knowledge. In other cases we observed them to
be quite simple but not really satisfying in so far as their
results are concerned. This experience led to the following
three main considerations an algorithm has to fulfill:

Fig. 8. The contour–plot of the estimated residuals. The sub-
structure is very well recognizable

1. There does not have to be any restrictions concerning
the form and dimension of the data set.

2. There must be an exact mathematical base of the al-
gorithm.

3. The algorithm should be easy to handle in order to en-
able an application by scientists having a less extensive
mathematical knowledge.

The resulting algorithm fully complies with these con-
ditions. The data sets investigated with the algorithm have
to fulfill two general conditions:

1. There must be a large amount of data forming a total
structure.

2. There must either be the knowledge that there exists
partial structures or the possibility to make an estima-
tion about such partial structures.

Looking at these restrictions the algorithm may be ap-
plied in every field of science with large amounts of data.
The methodology allows to extract well defined samples
from data sets.
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Appendix

1. G > −1 ∀x : f(x) > 0

Let us assume that there exists no error and that the esti-
mated superimposing structure f0 represents the real main
structure f in order to be able to estimate the ranges of
the function G.
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The estimated amplitude he has the following form:

he = h+ h∆ = h+
p

q
h = h

(
q + p

q

)
q > 0, p > −q.

The restriction p > −q has the following explanation:

p ≤ −q⇔ h∆ ≤ −h⇔ he ≤ 0,

but the estimated amplitude has to be larger than zero.
G(x) has the following form:

G(x) =
q

q + p

(
1 +

∑n
i=1 gisi(x)

hf(x)

)
− 1.

Assume that the following holds:

∃x : f(x) > 0 and G(x) ≤ −1

q

q + p

(
1 +

∑n
i=1 gisi(x)

hf(x)

)
− 1 ≤ −1∑n

i=1 gisi(x)

hf(x)
≤ −1.

This inequation cannot be fulfilled due to the restriction
in Eq. (2).

2. G < 1 + 2L ∀x : f(x) > 0

The upper boundary of G depends on the ratio between
the main structure hf(x) and the substructures

∑
gisi(x).

If the ratio

∑
i
gisi

hef(x) < L and he = h + h∆, the following

estimations hold:

h∆ ≥ 0⇒ G(x) ≤ L

h∆ ∈

[
−
h

2
, 0

)
⇒ G(x) < 1 + 2L.

The first estimation is easy to prove:

h∆ ≥ 0⇒ G(x) =
h

h+ h∆
− 1︸ ︷︷ ︸

≤0

+

∑
i gisi(x)

(h+ h∆)f(x)︸ ︷︷ ︸
≤

∑
i
gisi(x)

hf(x)
≤L

≤ L.

If h∆ < 0, e.g. h∆ = ch, c ∈ [−0.5, 0),⇒

G(x) =
h

h+ ch
− 1 +

∑
i gisi(x)

(h+ ch)f(x)

=
1

1 + c
− 1 +

∑
i gisi(x)

(1 + c)hf(x)
=

=
1

1 + c︸ ︷︷ ︸
1<x≤2

(
1 +

∑
i gisi(x)

hf(x)

)
︸ ︷︷ ︸

<1+L

−1⇒

G(x) < 2L+ 1.

If c ∈ (−1,−0.5), the values of G run away, but this
happens only in case of an extremely underestimated am-
plitude. The case c ≤ −1 is impossible because the ampli-
tude has always to be larger than zero.

It is only possible to estimate the value of L. If the
main component superimposes for example the substruc-
tures, the ratio between the main structure and the un-
derlying substructures has to be less than one. Therefore
G(x) < 3 ∀ x : hef(x) >

∑
i gisi(x) and he ≥

h
2 .

3. G ∈ (0, 1) ∀x : hf(x) >
∑n
i=1 gisi(x)

Let us assume that there exists no error and that the esti-
mated superimposing structure f0 represents the real main
structure f in order to be able to estimate the ranges of
the function G.

I(x) = hf(x) +
n∑
i=1

gisi(x)

G(x) =
hf(x) +

∑n
i=1 gisi(x)

hef(x)
− 1

If the estimated amplitude he converges to the real
amplitude h, the following estimation can be done:

G(x) =
hf(x)+

∑n

i=1
gisi(x)

hef(x) − 1 =

=
h

he
− 1︸ ︷︷ ︸

he→h⇒→0

+

∑n

i=1
gis(x)

hef(x) =

=

∑n

i=1
gisi(x)

hef(x) · (9)

Equation (9) has to be larger than or equal to zero
because of condition 2. Due to the assumption that
he f(x) >

∑
g s(x), the equation is less than 1. The more

the main structure superimposes the substructures, the
lower the value of G has to be.
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