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Abstract. The paper is devoted to the problem of the
determination of the orbital and physical parameters of
the active eclipsing binary SV Cam on the basis of the in-
terpretation of photometric observations made by Patkós
(1982) during the period 1973-1981. The problem is solved
in two stages: by obtaining a synthetic light curve in the
case when the parameters of the corresponding Roche
model (Djurašević 1992a) are given a priori (direct prob-
lem), and by determining the parameters of the model for
which the best fit between the synthetic light curve and
the observations is achieved (inverse problem) (Djurašević
1992b). A total of 18 light curves are analysed in the
framework of the Roche model, involving one and two
spotted regions on the primary component of the system
(Sp G3 V), for the temperature contrast between the spot-
ted area and the surrounding photosphere As = Ts/T1 =
0.65. The basic parameters of the system and of the spot-
ted areas are estimated. Throughout the whole set of the
analysed light curves, a double spot model fits the observa-
tions satisfactorily. A single spot model yields a poorer fit,
where the basic system parameters obtained by analysing
the individual light curves show stronger variations about
a mean value. That indicates that the single spot model
cannot successfully reproduce the SV Cam light curve
changes during the analysed period.

According to the obtained results the spotted areas
are formed at high latitudes and cover a significant part
of the stellar surface. No clear cyclicity of the system’s
activity is noted from the analysed observations. There
are some indications that spotted areas at high latitudes
(above 70o) correspond to an enhanced activity. Since the
system’s period is short (P = 0.d59), the presence of spot-
ted regions at high latitudes can be explained by the dy-
namo mechanism for rapid rotators (Schüssler & Solanski
1992). During the analysed period the spotted areas tend
to fall into a specially active longitude sectors at high lat-
itudes, near stellar polar regions. Due to a selection effect
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it is possible that a more extensive observational material
would correct this result to some extent.

The light curve analysis allowed an estimation of the
system parameters and of the active spotted regions.
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1. Introduction

The Close Binary (CB) SV Cam has an orbital period
P = 0.d59307. According to Hall (1976), it belongs to the
short-period group of the RS CVn binaries. Hilditch et
al. (1979) found that this system is composed of a G3V
primary, and K4V secondary, with the mass ratio q =
m2/m1 = 0.7. They made the hypothesis that the light
variations are due to a BY Draconis-type variability of the
K4V secondary. The careful photometry by Patkós (1982)
demonstrated conclusively the existence of a “distortion
wave”, which migrates toward increasing orbital phase,
and strong flaring activity, which Patkós (1981) attributed
to the active regions on the secondary star.

Using the Patkós’ (1982) observations, Busso et al.
(1985) analysed the differential rotation problem on the
basis of the depression migration (caused by spotted ar-
eas) through the light curve orbital phase with time. By
using a simplified model, the authors estimated the rele-
vant parameters, such as the angular velocity at the equa-
tor, the differential rotation rate, the mean velocity of the
meridional motion, the latitude of spots at formation and
the corotation latitude.

Observations extending over about half a century
(1932-1984) were analysed by Zeilik et al. (1988) in the
framework of the spot modelling technique (Budding
1977; Budding & Zeilik 1987) with spots on the primary.
According to these authors, the active dark spotted re-
gion covers a significant part of the stellar surface occu-
pying high latitudes (about 60o − 75o). The single active
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region tends to fall into two longitude sectors, 45o − 135o

and 225o−315o. These resemble the active longitude belts
such as proposed by Eaton & Hall (1979) for the RS CVn
group in general.

2. The spot model and the inverse problem
method

For the purpose of analysing the asymmetric light curves
deformed by the presence of spotted areas on the compo-
nents a Roche model based on the principles originated
in the paper by Wilson & Devinney (1971) is developed.
Here only some basic elements of the model are indicated,
whereas the details can be found in Djurašević (1992a).

The stellar size in the model is described by the filling
coefficients for the critical Roche lobes F1,2 of the pri-
mary and secondary respectively. They indicate to what
degree the stars of the system fill the corresponding crit-
ical lobes (see Fig. 1). In the case of synchronous rota-
tion of the components these coefficients are expressed
through the ratio of the stellar polar radii, R1,2, and the
corresponding polar radii of the critical Roche lobes, i.e.
F1,2 = R1,2/RRoche1,2. The stellar nonsynchronous rota-
tion is described by coefficients f1,2 = ω1,2/ωK, where
ω1,2 is the angular rotation rate of the components and ωK

is the Keplerian orbital revolution rate. In this case, the
critical Roche lobes belong to the critical nonsynchronous
lobes, and the filling coefficients F1,2 are defined with re-
spect to their polar radii. For a given mass ratio of the
components q = m2/m1, and the nonsynchronous rota-
tion coefficients f1,2, the stellar shape and size in a CB
Roche model are unequivocally determined by the filling
coefficients F1,2 of the critical lobes (Djurašević 1992a).

Fig. 1. The Roche model of an active CB with spotted areas
on the components

The presence of spotted areas (dark or bright) enables
one to explain the asymmetry and the depressions on the
light curves of active CBs. In the model these regions are
approximated by circular spots (Fig. 1) characterised by
the temperature contrast of the spot with respect to the
surrounding photosphere (As = Ts/T∗), by the angular

dimensions (radius) of the spot (θ) and by the longitude
(λ) and latitude (ϕ) of the spot centre.

For a successful application of the model in analysing
the observed light curves an efficient method unifying
the best properties of the Steepest Descent and the
Differential Corrections method into a single algorithm
(Djurašević 1992b) is proposed. This method is obtained
by modifying the Marquardt’s (1963) algorithm.

The interpretation of photometric observations is
based on the choice of optimal model parameters yielding
the best agreement between the observed light curve and
the corresponding synthetic one. Some of these parame-
ters can be determined a priori in an independent way,
while the others are found by solving the inverse problem.
Typical case of the inverse problem involves the estimate
of the following parameters: mass ratio of the components
(q = m2/m1), filling coefficients of the critical Roche lobes
(F1,2), orbit inclination (i), temperature of either compo-
nent (T ) and spotted areas parameters (θ, λ and ϕ). The
temperature contrast of the spotted regions with respect
to the surrounding photosphere (As) is usually given a
priori.

The Roche model given above and the method for the
inverse-problem solution allow us to obtain a direct anal-
ysis of the observed light curves.

3. Procedure of light curve analysis

The present paper contains an analysis of the light curves
of SV Cam observed in the period 1973-1981 (Patkós
1982), which is based on the Roche model with spotted
areas on the components (Djurašević 1992a). In Table 1
the data sequence of the individual light curves is pre-
sented. Here only the V passband light curves are consid-
ered because they are the most complete. Out of a total
of 38 light curves, 18 (which are relatively well defined)
are chosen to enable the estimate of the system and spot-
ted areas parameters. There are indications that they all
belong to one activity cycle (Busso et al. 1985).

In the analysis of the light curves, we avoided the some-
what questionable practice of forming normal points, and
included all observations. We obtained the optimal model
parameters trough the minimization of S = Σ(O − C)2,
where O−C is the residual between observed (LCO) and
synthetic (LCC) light curves for a given orbital phase. The
minimization of S is done in an iterative cycle of correc-
tions of the model parameters, based on the Marquardt’s
algorithm. This inverse problem method is characterised
by fast and reliable convergence, that allows one to effi-
ciently estimate the system parameters. The method also
gives standard errors.

Since the results of the light curve analysis are very
dependent on the choice of the adopted working hypoth-
esis, the analysis is carried out within the framework of
several hypotheses (single and double spotted areas; spots
on the primary and spots on the secondary).
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The present light curve analysis yields the filling coef-
ficients of the critical Roche lobes F1 and F2, about 0.88
and 0.64 for the primary and secondary, respectively (see
Tables 2 and 3). Since the critical Roche lobes are filled
by the components to a high degree, tidal effects are ex-
pected to contribute to synchronisation of the rotational
and orbital periods. Therefore, in solving the inverse prob-
lem, for nonsynchronous rotation coefficients we adopted
the values f1,2 = 1.0.

For such a case where neither the primary nor the sec-
ondary fill the critical Roche lobes, determination of the
mass ratio of the components by analysing light curves
only is not reliable. For this reason the mass ratio is fixed
by assuming the value q = m2/m1 = 0.71, estimated spec-
troscopically (Budding & Zeilik 1987). On the basis of its
spectral type (G3V) the temperature of the primary is
also fixed (T1 = 5800 K).

In the programme for solving the inverse problem, the
linear limb-darkening coefficients are determined on the
basis of the stellar effective temperature and of the stellar-
surface gravity, according to the given spectral type, by
using the polynomial proposed by D́ıaz-Cordovés et al.
(1995). For the gravity-darkening coefficients of the stars
the value of β1,2 = 0.08 was adopted. Lucy (1967) and
Osaki (1970) regard this value as being justifiable for stars
with convective envelopes.

The temperature of the secondary (about 4300 K) was
significantly lower than that of the primary. Therefore, its
contribution to the total brightness of the system is rela-
tively small. Hence one can expect that the spotted areas
on the secondary yield comparatively small photometric
effects. In this case, the model for the light curve fitting
requires very large spotted regions with a high tempera-
ture contrast with respect to the surrounding photosphere.
The spotted areas are too large even for a temperature
contrast As = Ts/T2 = 0.6, which yields the spot temper-
ature of about 2600 K. In the case of some light curves
analysed here the fitting of observations with a synthetic
light curve is not satisfactory. The basic parameters of the
system, such as the size of the components, the orbit in-
clination and the temperature of the secondary obtained
by analysing the individual light curves, should be variable
within significant limits, which is unacceptable. Therefore,
this hypothesis is rejected as unrealistic.

Under the assumption of spotted areas being on the
primary, the optimum synthetic light curves fit much bet-
ter the observations. The light curves were then anal-
ysed in the framework of the single and double spot
models. For the temperature contrast between the spot-
ted area and the surrounding photosphere it is assumed
As = Ts/T1 = 0.65, yielding the spot temperature to be
about 3770 K. Cellino et al. (1985) inferred from the in-
frared observations a spot temperature of 3780 K. On the
basis of this result the assumed value for the spotted area
temperature contrast may be considered as justified.

In analysing the light curves the following procedure
is applied. First, on the basis of the light curve form, the
curve No. 10 (see Tables 1-3 and Fig. 3) was chosen as
the cleanest from spot effects. In analysing it, the opti-
misation begins using only the basic model parameters.
After achieving a first convergence, one also includes free
parameters related to spots in the iterative optimisation
process.

The basic parameters of the system, obtained in this
way, are used as starting points in the inverse-problem
solution for other light curves. Their analysis begun by
optimisation in the spot parameters. When the optimisa-
tion based on these parameters does not secure a further
minimization of Σ(O− C)2, the basic system parameters
have to be introduced in the iterative process. Namely,
one cannot in advance exclude the possibility of certain
changes of some of these parameters during the analysed
period of time. Using this procedure we optimize all free-
parameters of the model in the final iterations. In this way
we save some computer time because a smaller number of
iterations is needed.

4. Results

The results of the light curve analysis in a “compressed”
form are presented in Table 2 (single spot model) and
Table 3 (double spot model). The tables contain parame-
ters of the system evaluated through an analysis of indi-
vidual light curves, numerated in accordance with Table
1. The errors in parameter estimation originated from the
nonlinear least-squares method on which the inverse prob-
lem method is based. They are just formal and do not rep-
resent a real accuracy of the evaluation of the parameters.
Especially, in evaluation of the spotted area size and lat-
itude the real errors are probably larger than mentioned.
This may be explained by the lack of a method for es-
timating the spot latitude and dimensions on the basis
of the light curve analysis. Namely, for a given orbit in-
clination, light curve modulations produced by a smaller
spotted area at a lower latitude or by a larger spotted area
at a higher latitude are similar. This gives rise to errors in
the spot-latitude and spot size estimation. In well-defined
light curves the real spot size and latitude errors approx-
imately estimated amount to ∆θ = ±2o and ∆ϕ = ±10o.
The errors can be larger in light curves insufficiently cov-
ered by observations.

On the basis of the results presented in Tables 2 and
3, and from Fig. 2a, it is evident that the double spot
model yields a better fit (lesser Σ(O − C)2). In this case,
the basic system parameters are approximately constant
for the whole set of the analysed light curves (see Figs.
2b-d). This means that for the entire observational period
the changes in the light curve form can be almost com-
pletely explained by changes in the position and size of
the spotted areas. Certain variability can be noticed in
temperature of the secondary, with the minimum value
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Fig. 2. Solutions obtained by analysing the light curves of SV Cam within the framework of the Roche model with one and
two spotted areas: Left - Quality of fitting (S) and basic sistem parametrs (F1,2, T2, i) obtained by analysing the individual light
curves; Right - spotted area parametres (λ, ϕ and θ) and (λ, ϕ) spot positions during the period 1973-1981
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in light curve No. 15. A comparatively small depth of the
secondary minimum of this light curve, probably indicates
a real phenomenon. The variations of the orbit inclination
are within the accuracy limits of the evaluation of this
parameter.

In the case of the single spot model, the fit obtained
is somewhat poorer, whereas the basic system parame-
ters obtained by analysing the individual light curves show
stronger variations about a mean value (see Table 2 and
Fig. 2 - left column). We consider this case as less reliable,
to the point of being possibly excluded.

The change of active-region parameters over the anal-
ysed observational period is suitable to be presented on
plots. Such a presentation is given in Fig. 2 (right column),
for a single and double spot model. The spot migration in
longitude during the analysed period is shown in Fig. 2e.
In the double spot model differences in spot longitudes in
opposite stellar hemispheres can be noticed.

The spotted areas appear at high latitudes, near the
polar regions (Fig. 2f). In the single spot model, for all
light curves one obtains a spotted area on the upper stellar
hemisphere, at sufficiently high latitudes (20o − 80o). In
the case of the double spot model, the 1st larger spotted
area is on the upper stellar hemisphere, near the polar
region (latitudes 50o− 86o). The 2nd smaller spotted area
is on the lower sttelar hemisphere, with latitudes in the
interval (−5o − −70o). During the analysed period, the
angular distance beetwen the centres of these two spotted
areas is in the interval 62◦ to 178◦ in longitude and 63o

to 143o in latitude. The mean values of these distances
amount to ∆λ1,2 = 137o and ∆ϕ1,2 = 107o.

The size of spotted area can be an indicator of the sys-
tem’s activity. Based on the obtained results (Fig. 2g) one
can say that the system during 1973 showed a significant
activity. During 1974 the activity decreased. Therefore, for
light curve No. 10, obtained in late 1974, one finds mini-
mum dimensions of the spotted areas. After this, there is a
fast increase in the activity. In 1976 it reaches a lower level
again, at which it remains with smaller changes till the end
of 1980. It seems that then a new significant increase in
the activity took place. Then the activity increases again.
Unfortunately, the data available are not sufficiently dense
in time to study the activity in more detail. A clear cyclic-
ity in the system’s activity is not noticeable.

In the framework of the obtained solutions for both
models it is possible to see a correlation between the lat-
itude, (Fig. 2f) and size (Fig. 2g) of spotted areas. The
large spotted area, near the stellar polar regions corre-
sponds to an enhanced activity of the system.

During the analysed period, (λ, ϕ)-postions of the
spotted area are grouped within active longitude and lat-
itude sectors (Fig. 2h). For the single spot model they are
in the intervals (50o − 170o) and (230o − 365o) of longi-
tude, and in (20o − 80o) of latitude respectively. In the
case of the double spot model the active longitude belts
for 1st spot in the intervals (45o−110o) and (200o−250o)

are less prominent, but more prominent for 2nd spot in
the (60o−120o) and (240o−300o) ones. The latitudes are
concentrated within the sectors (50o − 85o) - (1st spot)
and (−5o − −70o) - (2nd spot). Due to a selection effect
it is possible that a more extensive observational material
would correct this result to some extent.

Photometric effects of the spots with longitudes about
0o and 180o would be observable from the depth and shape
of the light curve minima and partialy from the rest part of
the light curve, which is not covered by eclipses. So, mask-
ing by eclipses does not explain the noticeable scarcity of
these spots.

The obtained fit of the observed light curves (LCO) by
the synthetic ones (LCC) following from the inverse prob-
lem solutions based on the single and double spot model
are shown in Fig. 3. In order to easily follow the obtained
solutions, the light curves are noted by ordinal numbers
(No) in accordance with the ones applied in Tables 1, 2 and
3. Substantial differences in the quality of fits obtained by
using single (dashed line) and double spot models (solid
line) can be noticed in some light curves.

Figure 4 (double spot model) shows the view of the
system obtained on the basis of the parameters estimated
by analysing the corresponding light curves. The numer-
ation of the figures corresponds to the ordinal number of
the analysed light curves. The figures were made by using
the programme (Djurašević 1991). Thanks to such plots,
one can see a view of a CB system at a noted orbital phase,
chosen in such a way that the spots are visible.

5. Discussion and conclusions

Both presentations of the results (Table 3 and correspond-
ing figures) show that in the case of the Roche model with
two spotted regions, the synthetic light curves obtained by
solving the inverse problem fit the observations very well
(almost within the measurement accuracy). The variations
of the basic system parameters among the different curves
for the analysed period are insignificant. This means that
the variations in the light curves can be explained by the
change of the position and size of the spotted areas on the
primary.

For the majority of the analysed light curves the sin-
gle spot model (Table 2 and corresponding figures) fits
well the observations. But this model requires compar-
atively large variations of the basic system parameters
(e.g. the stellar size - Fig. 2b) during the analysed period.
Therefore, we tend to exclude this solution.

Appearing at high latitudes, the spotted areas cover a
significant part of the stellar surface. Since the system’s
period is short (P = 0.d59), the presence of spots at high
latitudes (near the pollar regions) can be explained by
the dynamo mechanism for rapid rotators (Schüssler &
Solanski 1992).

In favour of presence of spotted areas at high lat-
itudes we have an independent argument based on the
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Fig. 3. Observed (LCO) and final synthetic (LCC) light curves of SV Cam obtained by solving the inverse problem within the
framework of the Roche model with one (dashed line) and two (solid line) spotted areas
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Table 1. Data sources for the analysis of the observed light curves (Patkós 1982) for the active CB SV Cam (V -filter)

Data set No. Date JD N
1 1973 Jan. 04 - 1973 Jan. 12 2441695, 2441696 98
2 1973 May. 04 - 1973 Jun. 02 2441807, 2441810, 2441824, 2441825, 2441831, 2441833, 2441835 107
3 1973 Aug. 05 - 1973 Aug. 11 2441900, 2441901, 2441903, 2441904, 2441905 97
4 1973 Oct. 03 - 1973 Oct. 06 2441959, 2441960, 2441961 135
5 1973 Oct. 06 - 1973 Oct. 08 2441962, 2441963 97
6 1973 Oct. 26 - 1973 Oct. 27 2441982 79
7 1973 Oct. 27 - 1973 Oct. 29 2441983, 2441984 138
8 1973 Dec. 02 - 1973 Dec. 03 2442019 98
9 1974 Feb. 27 - 1974 Mar. 02 2442106, 2442108 71
10 1974 Dec. 22 - 1974 Dec. 24 2442404, 2442405 123
11 1975 Feb. 16 - 1975 Feb. 18 2442432, 2442460, 2442461 101
12 1975 Feb. 21 - 1975 Feb. 23 2442465, 2442466 87
13 1975 Apr. 19 - 1975 Apr. 21 2442522, 2442523 55
14 1976 Feb. 20 - 1976 Feb. 28 2442829, 2442830, 2442831, 2442836 72
15 1977 Sep. 05 - 1977 Sep. 08 2443392, 2443393, 2443394 60
16 1979 Jan. 04 - 1979 Jan. 07 2443878, 2443879, 2443880 158
17 1980 Feb. 15 - 1980 Feb. 16 2444285 177
18 1980 Dec. 08 - 1980 Dec. 09 2444582 258

Note: JD - Julian Dates of the observations, N - total number of observations for the given light curve.

Table 2. Results of the analysis of the SV Cam light curves obtained by solving the inverse problem for the Roche model with
one spotted area on the primary component

No. θ λ ϕ F1 F2 T2 i u2 Ω1 Ω2 R1 R2 Σ(O− C)2

1 12.7±1.3 307 ±11 53±7 0.888±0.005 0.662±0.004 4390±50 89.4±1.4 0.76 3.559 4.394 0.342 0.217 0.02663
2 45.7±1.0 7 ±2 79±1 0.833±0.005 0.575±0.003 4250±70 89.8±0.8 0.77 3.796 4.897 0.321 0.188 0.02422
3 27.2±0.7 85 ±3 60±1 0.880±0.006 0.634±0.005 4300±60 88.9±0.9 0.76 3.626 4.540 0.339 0.208 0.02871
4 37.9±0.5 128 ±1 75±1 0.868±0.003 0.604±0.002 4250±30 88.9±0.5 0.77 3.667 4.710 0.334 0.198 0.01090
5 28.7±0.6 112 ±4 63±1 0.874±0.007 0.634±0.004 4390±50 89.7±0.9 0.76 3.645 4.540 0.336 0.208 0.02555
6 32.5±0.9 173 ±4 76±1 0.882±0.003 0.634±0.002 4310±30 89.2±0.9 0.76 3.619 4.542 0.339 0.208 0.00447
7 43.0±1.0 166 ±2 80±1 0.877±0.003 0.624±0.002 4230±30 88.9±0.6 0.77 3.634 4.597 0.338 0.205 0.01095
8 14.7±0.8 242 ±3 21±14 0.873±0.003 0.642±0.002 4230±40 89.7±1.2 0.77 3.648 4.496 0.336 0.211 0.01224
9 30.7±0.6 276 ±3 56±11 0.878±0.009 0.651±0.006 4150±80 89.4±1.0 0.78 3.633 4.452 0.338 0.213 0.01615
10 7.8 ±0.6 236 ±9 34±10 0.863±0.003 0.642±0.002 4150±40 89.0±1.3 0.78 3.686 4.497 0.332 0.210 0.00775
11 42.9±0.8 336 ±2 80±1 0.851±0.004 0.599±0.003 4050±60 89.5±0.9 0.79 3.728 4.742 0.327 0.196 0.01292
12 49.3±0.5 341 ±2 79±1 0.842±0.003 0.578±0.002 4150±30 89.6±0.3 0.78 3.762 4.877 0.324 0.189 0.00554
13 48.1±0.8 314 ±7 84±1 0.851±0.005 0.613±0.003 4140±50 89.4±1.1 0.78 3.726 4.656 0.328 0.201 0.00530
14 16.5±1.2 69 ±7 52±4 0.878±0.006 0.654±0.004 4140±110 89.7±2.3 0.78 3.631 4.436 0.338 0.214 0.03825
15 33.6±0.9 50 ±2 68±1 0.849±0.008 0.647±0.005 4050±60 89.3±1.2 0.79 3.736 4.472 0.327 0.212 0.00884
16 15.4±0.8 249 ±6 25±8 0.936±0.008 0.706±0.006 4250±80 89.4±1.4 0.77 3.445 4.187 0.360 0.231 0.13520
17 13.4±0.3 83 ±3 47±2 0.870±0.002 0.644±0.002 4050±50 89.3±0.5 0.79 3.660 4.487 0.335 0.211 0.01586
18 45.5±0.4 354 ±1 78±1 0.861±0.002 0.600±0.002 4300±20 89.2±0.3 0.76 3.693 4.739 0.331 0.197 0.03177

Fixed parameters:
q = m2/m1 = 0.71 - mass ratio of the components,
T1 = 5800 K - temperature of the primary,
As = Ts/T1 = 0.65 - spotted area temperature coefficient,
f1 = f2 = 1.00 - nonsynchronous rotation coefficients of the components,
β1 = β2 = 0.08 - gravity-darkening coefficients of the components,
u1 = 0.66 - limb-darkening coefficient of the primary.

Note: No. - data set No., θ - spotted area angular dimensions, λ - spot longitude and ϕ - spot latitude (all in degrees), F1, F2 - filling
coeficients for critical Roche lobes of the primary and secondary, T2 - temperature of the secondary, i - orbit inclination (in degrees), u2 -
limb-darkening coefficient of the secondary, Ω1,Ω2 - dimensionless surface potentials of the primary and secondary, R1, R2 - stellar polar
radii in units of the distance between the component centres and Σ(O − C)2 - final sum of squares of residuals between observed (LCO)
and synthetic (LCC) light curves.
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Table 3. Results of the analysis of the SV Cam light curves obtained by solving the inverse problem for the Roche model with
two spotted areas on the primary component

No. θ1 λ1 ϕ1 θ2 λ2 ϕ2 F1 F2 T2 i u2 Ω1 Ω2 R1 R2 Σ(O − C)2

1 50.7±2.2 111 ±7 86±12 18.4±0.9 303 ±5 -53±3 0.881±0.006 0.641±0.004 4390±50 89.4±0.7 0.76 3.623 4.404 0.339 0.210 0.02400
2 27.4±0.4 60 ±2 59±1 14.9±0.4 285 ±2 -4 ±3 0.885±0.005 0.651±0.003 4300±50 89.0±0.6 0.76 3.607 4.450 0.341 0.213 0.01575
3 44.8±0.6 90 ±2 70±1 13.8±0.7 285 ±5 -7 ±20 0.893±0.006 0.638±0.005 4390±50 89.6±0.9 0.76 3.583 4.516 0.344 0.209 0.02531
4 33.1±0.2 109 ±1 64±1 12.3±0.3 240 ±3 -25±3 0.897±0.002 0.640±0.002 4380±20 89.4±0.2 0.76 3.567 4.508 0.345 0.210 0.00801
5 41.2±0.4 104 ±2 71±1 14.9±0.4 242 ±3 -30±5 0.888±0.003 0.632±0.002 4330±30 89.9±0.4 0.76 3.599 4.552 0.342 0.207 0.00928
6 46.7±1.1 201 ±4 83±1 15.5±1.0 99 ±3 -25±13 0.888±0.003 0.634±0.002 4340±20 89.4±0.9 0.76 3.596 4.540 0.342 0.218 0.00371
7 34.6±0.6 186 ±2 72±1 14.6±0.4 78 ±4 -58±2 0.877±0.003 0.633±0.002 4220±30 89.7±0.6 0.77 3.634 4.546 0.338 0.207 0.01008
8 37.2±0.5 241 ±2 68±1 12.8±0.3 63 ±2 -13±4 0.886±0.003 0.646±0.002 4220±30 89.4±0.6 0.77 3.606 4.474 0.341 0.212 0.00626
9 37.9±0.6 281 ±3 63±1 9.1 ±1.0 112 ±6 -22±25 0.870±0.008 0.640±0.005 4250±80 89.5±0.7 0.77 3.660 4.508 0.335 0.210 0.01580
10 22.4±0.5 245 ±5 71±1 7.5 ±0.3 87 ±7 -24±5 0.871±0.003 0.652±0.002 4160±30 89.5±0.6 0.78 3.656 4.444 0.335 0.214 0.00676
11 30.2±0.4 45 ±1 66±1 28.2±0.3 275 ±2 -60±1 0.879±0.003 0.642±0.002 4200±30 89.9±0.3 0.77 3.628 4.496 0.338 0.211 0.00651
12 30.2±0.4 45 ±1 66±1 27.4±0.3 283 ±2 -58±1 0.876±0.003 0.640±0.002 4190±30 89.9±0.3 0.77 3.639 4.508 0.337 0.210 0.00400
13 52.9±1.1 61 ±4 86±1 15.9±0.4 269 ±2 -17±3 0.870±0.003 0.635±0.002 4250±30 89.5±0.5 0.77 3.658 4.534 0.335 0.208 0.00332
14 23.3±6.9 206 ±15 53±35 22.8±1.3 73 ±8 -62±3 0.884±0.006 0.664±0.004 4290±100 89.4±1.5 0.76 3.612 4.384 0.340 0.218 0.03680
15 31.8±2.1 3 ±21 83±2 21.8±0.6 65 ±2 -52±3 0.870±0.007 0.647±0.006 4090±50 89.5±2.0 0.79 3.660 4.470 0.335 0.212 0.00843
16 31.3±0.8 233 ±4 64±1 16.5±0.5 21 ±2 -10±6 0.862±0.008 0.653±0.006 4210±60 89.7±1.0 0.77 3.689 4.437 0.332 0.214 0.07426
17 33.2±1.1 231 ±3 82±1 22.0±0.3 78 ±2 -61±1 0.875±0.006 0.644±0.002 4150±30 89.3±0.4 0.78 3.642 4.486 0.337 0.211 0.01444
18 34.3±0.4 318 ±1 69±1 31.1±0.4 74 ±2 -71±1 0.874±0.002 0.627±0.001 4280±20 89.2±0.3 0.76 3.644 4.581 0.337 0.205 0.02985

Fixed parameters:
q = m2/m1 = 0.71 - mass ratio of the components,
T1 = 5800 K - temperature of the primary,
As1,2 = Ts1,2/T1 = 0.65 - spotted areas temperature coefficient,
f1 = f2 = 1.00 - nonsynchronous rotation coefficients of the components,
β1 = β2 = 0.08 - gravity-darkening coefficients of the components,
u1 = 0.66 - limb-darkening coefficient of the primary.

Note: No. - data set No., θ1,2 - spotted areas angular dimensions, λ1,2 - spots longitude and ϕ1,2 - spots latitude (all in degrees); F1, F2 -
filling coeficients for critical Roche lobes of the primary and secondary, T2 - temperature of the secondary, i - orbit inclination (in degrees),
u2 - limb-darkening coefficient of the secondary, Ω1,Ω2 - dimensionless surface potentials of the primary and secondary, R1, R2 - stellar
polar radii in units of the distance between the component centres and Σ(O − C)2 - final sum of squares of residuals between observed
(LCO) and synthetic (LCC) light curves.

differential-rotation effect. As seen from the Fig. 2e, and
Fig. 3, the light curve depression is shifted through the
orbital phase with time. This depression migration can
be explained by the difference between the spotted area
angular velocity ω and the Keplerian angular velocity in
the system’s revolution ωK. This is to be expected in the
case of the differential rotation of the stellar surface layers
and for the nonsynchronous rotation of the components.
Here a short-period CB is analysed whose stars fill in their
critical Roche lobes significantly; hence due to the tidal
effects the rotation of the components is expected to be
synchronous.

The depression shifting along the light curves can be
in both senses, direct and retrograde (see Busso et al.
1984), which depends on whether the spotted area latitude
exceeds the corotational one or not. This circumstance
(shifting sense) appears as a serious indication in favour
of the diferential rotation existence. By applying simple
approximations, based on the analogy with the problem
of the differential rotation of the Sun, it is possible in
certain cases to obtain the data on the component dif-
ferential rotation in RS CVn type of CBs. Following the
idea applied by Busso et al. (1985) the active region is ap-
proximated here by a circular spotted area whose centre
corresponds to the photocentre of the given region and the
photometric time variations of the light curves are inter-
preted through the change in the position and size of the

spot. Due to the meridional motion from higher towards
lower latitudes, the differential rotation causes the shift
of the spotted area longitude in the course of time. The
differential-rotation parameters are derived on the basis
of these longitude shifts.

The single spot model is compatible with that for ob-
taining the differential-rotation parameters. Although it
has been shown that this model has certain drawbacks,
in analysing the differential rotation one can exploit the
data of the spotted area longitudes (see Table 2) for
the entire set of observed light curves over the interval
1973-1981. Such an analysis is presented in Djurašević
(1996). The nonlinear system of equations, describing
the differential rotation is solved following adequate ap-
proaches (Marquardt’s algorithm - Marquardt 1963 - and
SIMPLEX - Torczon 1991). These algorithms are suitable
for the problems of nonlinear optimisation and they en-
able one to solve equation systems describing the differen-
tial rotation. The results obtained for the case of SV Cam
(Djurašević 1996) indicate that the spotted area appears
at high latitudes (about 84o), whereas the corotation lati-
tude is about 30o. Although the model for calculating the
differential-rotation parameters is rough, this result is an
indication that in the case of the short-period RS CVn
type of CBs, spotted areas can be expected in the polar
regions.
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Fig. 4. The view of the CB SV Cam at corresponding orbital phase with parameters obtained by solving the inverse problem

The consideration of the differential rotation problem
and the results of the light curve analysis for SV Cam
presented here, clearly indicate that large spotted areas
in the polar regions of the primary could be accepted as
a reality.
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Djurašević G., 1992b, Ap&SS 197, 17
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