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Abstract. The program developed by Burgess for spline
fitting and interpolating collision strengths can also be
used to do isoelectronic fits. Instead of treating Ω(E) or
Υ(T) one inputs an arbitrary quantity A(Z) that is a
function of nuclear charge number Z. In this way isoelec-
tronic atomic data can be visualised and compacted in an
easy manner which allows for accurate interpolation along
a sequence. Four illustrative applications are provided.
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1. Introduction

Atomic quantities such as oscillator strengths, spectral
line wavelengths, energy levels and ionization potentials
depend on the nuclear charge number Z. Methods of
plotting such atomic data along isoelectronic sequences
have been in use for a long time. For example, this was
how Edlén (1942) showed that the mysterious green coro-
nal line originates from a forbidden transition within the
ground configuration of Fe XIV. He had the simple but
astute idea of plotting essentially the fourth root of the
ground term splitting ∆σ as a function of Z. The result-
ing reduced splittings deduced from laboratory spectra of
neutral aluminium and the first eight ions of the sequence
lie on a smooth curve. When extended to higher values
of Z the curve is seen to coincide with the coronal lines
λ5303 and λ3601, assuming they come from Fe XIV and
Ni XVI respectively.

Here we show how the program OMEUPS developed
by Burgess (see Burgess & Tully 1992) can be used for
exhibiting and spline fitting atomic data along an isoelec-
tronic sequence. Instead of inputting the collision strength
Ω(E) as a function of the final collision energy E, we in-
put A(Z) where A is the quantity under study and Z
is the atomic, or nuclear charge, number. An attractive
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feature of OMEUPS is that it makes use of interactive
graphics. The program transforms A(Z) to a reduced form
Ar(Zr) where the reduced charge number Zr varies from
zero when Z = Z0 to unity when Z = ∞. The value as-
signed to Z0 determines the range of elements we wish to
include. In general we assume Z0 = N , where N is the
number of bound electrons, so that the range includes the
neutral atom and all positive ions. A parameter C occurs
in the definition of Zr to provide a useful degree of flex-
ibility for modifying the plot. By varying the value of C
one alters the way in which the data points are distributed
across the figure. In many cases Ar(Zr) tends to a finite
limit at Zr = 1 which can be determined. This is often
helpful when approximating the data points by a least
squares 5 point cubic spline. The program carries out the
spline fitting procedure efficiently and rapidly.

We compare our method with Edlén’s for a fine struc-
ture transition in the aluminium sequence (see Fig. 3) and
give other examples to show the usefulness and versatility
of the present approach.

Preliminary versions of the examples given here were
presented at the 5th International Colloquium on Atomic
Spectra and Oscillator Strengths for Astrophysical and
Laboratory Plasmas which was held at the Observatoire
de Paris (Meudon) from 28 to 31 August 1995.

2. Fitting isoelectronic data

The reduced charge number Zr is defined by

Zr =
Z − Z0

Z − Z0 + C
, (1)

where Z is the atomic number (i.e. nuclear charge in
atomic units) for which the range is Z0 ≤ Z < ∞. Z0

is usually equal to the number of bound electrons N al-
though on occasions it is more convenient if Z0 > N as
in the second example (Fig. 2) where Z0 = N + 1. Here
we omit the neutral atom case and consequently obtain a
much better fit to the positive ion data points. The pa-
rameter C is adjusted in order to optimise the spline fit.
The plots we use are either of type 2 (A ∼ constant for
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Fig. 1. Fluorine sequence: Ar ≡ log(Tmax), Zo = N = 9,
C = 4.4

large Z) or type 3 (A ∼ Z−2 for large Z). The different
types of plot are defined and discussed by Burgess & Tully
(1992).

Fig. 2. Fluorine sequence: Ar ≡ I/(Z−Z0 +1)2, Z0 = N = 9,
C = 1.8

2.1. Type 2 plots

Figure 1 concerns temperatures of maximum abundance
Tmax for fluorine-like ions in conditions of coronal ion-
ization equilibrium. From Arnaud & Rothenflug’s (1985)
tabulation we obtain estimates of log(Tmax) for 10 ions in
the sequence. Our spline fit can be used to complete their
tabulation for the intermediate ions which they did not

consider. Here we input A ≡ log(Tmax) and treat it as a
type 2 case. The optimised fit has C = 4.4 and rms error
0.38%. Since we only wish to interpolate the data but not
extrapolate them, we are not concerned with the high Z
limit point. In fact it does not exist since there is a weak
(logarithmic) divergence in this case.

Figure 2 deals with the ionization energy I of fluorine-
like ions. Since I increases like Z2 as Z tends to ∞, we
treat this as type 2 by inputting A ≡ I/(Z−N+1)2, with
I in cm−1. The limit point at Zr = 1 corresponding to
Z →∞ is the hydrogenic value R∞/4 = 27434, while the
optimised fit (rms error 0.16%) is obtained with C = 1.8.

Fig. 3. Aluminium sequence: Ar ≡ (Z − Z0 + 1)2/(∆σ)1/2,
Z0 = N = 13, C = 7.8

2.2. Type 3 plots

Figure 3 shows our way of interpolating the ground term
magnetic dipole transition energies for the aluminium se-
quence. It is instructive to compare this way of plotting
the data with that used by Edlén (1942) in his Fig. 1.
We invert the observed spin-orbit splitting ∆σ of the
3s23p 2P◦ term, which Edlén (1942) gives in cm−1 in Ta-
ble 2, and take the square root. This yields a quantity
A ≡ (∆σ)−1/2 ∼ Z−2 at high Z. The value of the limit
point for this type 3 plot is

LimZ→∞[A(Z)Z2] = (54/R∞α
2)1/2 = 3.040 cm1/2 , (2)

and is deduced from the well-known expression for the
spin-orbit splitting given by Edlén (1964, p. 167), viz.

∆σ = R∞α
2(54)−1(Z − s′)4 , (3)

where the screening parameter s′ > 0 is a finite quantity
which varies slowly with Z. The optimised spline fit (rms
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Table 1. Spline fitting parameters for the curves shown in the figures

Figure 1 2 3 4 (0-1) 4 (0-2) 4 (1-2)
Type 2 2 3 3 3 3
C 4.4 1.8 7.8 4.1 4.4 4.2
P1 3.609E+0 1.406E+5 9.447E−2 3.560E−1 2.440E−1 9.950E−1
P2 4.830E+0 9.742E+4 4.643E−1 2.053E+0 1.240E+0 5.317E+0
P3 5.442E+0 6.674E+4 1.049E+0 4.975E+0 2.673E+0 1.217E+1
P4 6.485E+0 4.491E+4 1.877E+0 7.451E+0 4.156E+0 1.859E+1
P5 7.770E+0 2.746E+4 3.040E+0 7.520E+0 5.910E+0 2.270E+1
error 0.38% 0.16% 0.05% 0.10% 0.13% 0.05%

Table 2. (a) Log(Tmax) from the spline fit shown in Fig. 1.
Tmax is the temperature of maximum coronal abundance for
F-like ions. (b) Ionization energy in cm−1 for F-like ions de-
duced from the spline fit shown in Fig. 2. The results given
here are calculated using data from Table 1

Ion F Ne+ Na+2 Mg+3 Al+4

(a) 3.609 4.600 4.999 5.205 5.375
(b) 1.406E+5 3.316E+5 5.770E+5 8.806E+5 1.241E+6

Ion Si+5 P+6 S+7 Cl+8 Ar+9

(a) 5.543 5.706 5.857 5.991 6.111
(b) 1.658E+6 2.129E+6 2.655E+6 3.236E+6 3.871E+6

Ion K+10 Ca+11 Sc+12 Ti+13 V+14

(a) 6.217 6.312 6.396 6.471 6.538
(b) 4.562E+6 5.307E+6 6.107E+6 6.962E+6 7.872E+6

Ion Cr+15 Mn+16 Fe+17 Co+18 Ni+19

(a) 6.599 6.654 6.704 6.750 6.792
(b) 8.837E+6 9.856E+6 1.093E+7 1.206E+7 1.324E+7

Table 3. Transition energy in cm−1 for the fine structure split-
ting in the ground configuration of aluminium and Al-like ions.
(a) Using the spline interpolation data given in Table 1. (b) Us-
ing Edlén’s (1964) extrapolation formula

Ion Al Si+ P+2 S+3 Cl+4

(a) 1.121E+2 2.870E+2 5.599E+2 9.520E+2 1.491E+3
(b) 1.144E+2 2.873E+2 5.587E+2 9.512E+2 1.491E+3

Ion Ar+5 K+6 Ca+7 Sc+8 Ti+9

(a) 2.207E+3 3.133E+3 4.307E+3 5.767E+3 7.555E+3
(b) 2.208E+3 3.134E+3 4.306E+3 5.761E+3 7.542E+3

Ion V+10 Cr+11 Mn+12 Fe+13 Co+14

(a) 9.714E+3 1.229E+4 1.532E+4 1.887E+4 2.299E+4
(b) 9.692E+3 1.226E+4 1.530E+4 1.885E+4 2.299E+4

error of 0.05%) is obtained when C = 7.8. Edlén’s (1964)
extrapolation formula for Z−s′ as a function of Z is given
by the pair of equations

s′ = s− 31α2(Z − s′)3/192 (4a)

s = 5.3124 + 6.689(Z − 9.7)−1 − 0.00306Z (4b)

which reduces to finding the roots of the cubic equation
(Maple 1995)

a(Z − s′)3 − (Z − s′) + b = 0 , (5)

Table 4. Fine structure collision strengths Ω(J, J ′) at zero
energy for the ground 3P term in C-like ions. (a) Ω(0, 1); (b)
Ω(0, 2); (c) Ω(1, 2). Results obtained using the interpolating
spline fit given in Table 1

Ion N+ O+2 F+3 Ne+4 Na+5

(a) 3.56E−1 3.89E−1 3.31E−1 2.51E−1 1.96E−1
(b) 2.44E−1 2.32E−1 1.75E−1 1.32E−1 1.01E−1
(c) 9.95E−1 1.01E+0 7.95E−1 6.11E−1 4.73E−1

Ion Mg+6 Al+7 Si+8 P+9 S+10

(a) 1.55E−1 1.24E−1 1.01E−1 8.35E−2 7.00E−2
(b) 7.94E−2 6.37E−2 5.22E−2 4.35E−2 3.68E−2
(c) 3.72E−1 2.98E−1 2.44E−1 2.02E−1 1.70E−1

Ion Cl+11 Ar+12 K+13 Ca+14 Sc+15

(a) 5.93E−2 5.08E−2 4.39E−2 3.83E−2 3.37E−2
(b) 3.15E−2 2.73E−2 2.39E−2 2.11E−2 1.88E−2
(c) 1.45E−1 1.25E−1 1.09E−1 9.55E−2 8.44E−2

Ion Ti+16 V+17 Cr+18 Mn+19 Fe+20

(a) 2.98E−2 2.66E−2 2.38E−2 2.14E−2 1.94E−2
(b) 1.68E−2 1.51E−2 1.37E−2 1.25E−2 1.14E−2
(c) 7.52E−2 6.74E−2 6.07E−2 5.49E−2 5.00E−2

where

a = 31α2/192 (6)

and

b = 1.00306Z − 6.689(Z − 9.7)−1 − 5.3124 . (7)

Only one of the roots of (5) is a physical solution, and its
range of validity as a function of Z is limited, since for
Z ≥ 85 the screening parameter s′ becomes negative.

Figure 4 shows the compacting and interpolation of
Blaha’s (1969) distorted wave results for three fine struc-
ture collision strengths at threshold energy in the carbon
sequence. The transitions are between the lowest three
levels. Blaha gives results for neutral carbon and 7 ions
in the sequence. Here we take Z0 = N + 1 = 7 and input
A ≡ Ω which decreases like Z−2 as Z → ∞. The high Z
limits for Z2Ω are from Saraph et al. (1969).

2.3. Spline fitting parameters

The five knot values P1, P2, P3, P4, P5 and C parameter for
each of the spline curves shown in Figs. 1 to 4 are given in
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Table 1. By means of the program FUNCTION SPLINE
(P1, P2, P3, P4, P5, X), (see Burgess & Tully’s 1992
Appendix), it is possible to interpolate the reduced data
points shown in the figures. Notice that X ≡ Zr and by
using the definition of Zr in terms of Z, Z0 and C, and
knowing the type of plot one can obtain A(Z).

The interpolated results given in Tables 2, 3 and 4 are
calculated using data in Table 1 and the spline program
from Burgess & Tully (1992).
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Fig. 4. Carbon sequence: Ar ≡ (Z − Z0 + 1)2Ω(J, J ′),
Z0 = N + 1 = 7, C0−1 = 4.1, C0−2 = 4.4, C1−2 = 4.2


