The fine structure energy levels and oscillator strengths for the dipole allowed and the intercombination transitions are discussed in separate subsections below.
A total of 1274 bound fine structure energy levels of Ar XIII and 1611
levels of Fe XXI are obtained. These correspond to total angular momenta
of 0
7 of both even and odd parities formed from spin
multiplicities of 2S+1 = 5, 3, 1, and total orbital angular momenta of
0
9 with
10, 0
.
The levels
are presented in two formats: (i) in
order for practical
applications and (ii) in LS term order for spectroscopy and
completeness check up.
Tables 2a and 3a present a partial set of energy levels of Ar XIII and
Fe XXI, respectively, in format (i), i.e., in
order (the complete
tables are available electronically). At the top of each set. NJ is
the total number of energy levels for symmetry of
.
For example,
there are 56 fine structure levels of Ar XIII with
=
.
However, in the table, only part of the levels belonging to symmetry
is presented for illustration. The levels are identified with
the configuration and LS term of the core and the outer electron
quantum numbers. The effective quantum number,
where
is the immediate target threshold, is given next to the
energies. However,
is not given for the equivalent electron levels
as it is not defined for these levels. Each level is assigned to one
or more LS terms in the last column. If number of possible term is
more than one, all are specified. However, the proper term from a multiple
possibilities can be determined from Hund's rule; the term with higher
angular momentum lies lower in energy. For example, the three levels
4, 5, and 6 of set
= 1
in Table 2a are assigned with 3
possible terms,
,
whereupon the first level, i.e., level
4 can be designated as the
,
while level 5 is
,
and level
6 is
.
One reason for specifying
all possible terms is that the order of calculated energy levels may
not match exactly that of the measured ones. The other reason is that
Hund's rule may not apply to all cases for complex ions; nonetheless
it is useful to establish completeness. Similar sets of
levels for Fe XXI are presented in Table 3a.
Tables 2b and 3b present the energy levels of Ar XIII and Fe XXI,
respectively, in ascending order regardless of
values, and are
grouped together according to the
same configuration to show the correspondence between two sets of
representations, in J-levels and in LS terms. (Listing of the
lowest levels of equivalent electron states are omitted as they
are given in energy comparison table). The grouping of levels
provides the check for completeness of sets of energy levels that
should belong to the corresponding LS term, and
detects any missing level. The title line of each set of levels
in the tables lists spin multiplicity (2S+1), parity, all possible
L-values that can be formed from the core or target term, and outer
or the valence electron angular momentum. The J-values for each
possible LS term are
specified within the parentheses next to the value of L. "Nlv''
is the total number of J-levels that are expected from this set of
LS terms. This line is followed by the set of BPRM energy levels of
same configurations. "Nlv(c)'', at the end of the set, specifies the total
number of J-levels obtained. If Nlv = Nlv(c) for a set,
the calculated energy set is complete. The correspondence of couplings
and completeness of levels are carried out by the program PRCBPID
which also detects and prints the missing levels. For example,
in the set for
for Ar XIII near the end of Table 2b,
the set is found to be incomplete where four levels of J=5, 4, 6, 5 are
missing. Sets with missing levels usually lie in the high energy region.
Each level of a set is further identified by all possible LS terms
(specified in the last column of the set). The multiple LS terms
can be reduced to the most probable (but approximately) one using
Hund's rule, as explained above. It may be noted that levels are
grouped consistently in closely spaced energies and in effective
quantum numbers confirming proper designation of the LS terms.
The BPRM energy levels for Ar XIII and Fe XXI are compared in Table 4
with the limited number of levels observed. The 55 observed levels
of Ar XIII (Kelly, NIST) are not in the compiled list by the NIST.
However, the calculated fine structure energies agree with these
observed ones to about 1% for most of the levels. The difference is
upto 9%. The agreement
between the observed and calculated energies is much better for Fe XXI
(Table 4).
Level | J | IJ | ![]() |
![]() |
Level | J | IJ | ![]() |
![]() |
||
Ar XIII | |||||||||||
![]() |
![]() |
2 | 1 | -50.133 | -50.209 |
![]() |
![]() |
2 | 9 | -19.053 | -19.149 |
![]() |
![]() |
1 | 1 | -50.243 | -50.326 |
![]() |
![]() |
1 | 8 | -19.037 | -19.112 |
![]() |
![]() |
0 | 1 | -50.332 | -50.416 |
![]() |
![]() |
0 | 3 | -19.025 | -19.079 |
![]() |
![]() |
2 | 2 | -49.558 | -49.621 |
![]() |
![]() |
1 | 9 | -18.740 | -18.772 |
![]() |
![]() |
0 | 2 | -48.856 | -48.905 |
![]() |
![]() |
3 | 4 | -18.736 | -18.787 |
![]() |
![]() |
2 | 1 | -48.274 | -48.346 |
![]() |
![]() |
3 | 8 | -17.126 | -16.822 |
![]() |
![]() |
3 | 1 | -46.469 | -46.508 |
![]() |
![]() |
2 | 16 | -17.126 | -16.805 |
![]() |
![]() |
2 | 2 | -46.480 | -46.533 |
![]() |
![]() |
1 | 16 | -17.126 | -16.605 |
![]() |
![]() |
1 | 1 | -46.476 | -46.527 |
![]() |
![]() |
3* | 6 | -17.117 | -17.281 |
![]() |
![]() |
2 | 3 | -45.803 | -45.826 |
![]() |
![]() |
2* | 14 | -17.074 | -17.274 |
![]() |
![]() |
1 | 2 | -45.814 | -45.844 |
![]() |
![]() |
2 | 15 | -16.019 | -16.867 |
![]() |
![]() |
0 | 1 | -45.817 | -45.852 |
![]() |
![]() |
2 | 19 | -15.784 | -15.731 |
![]() |
![]() |
2 | 4 | -44.630 | -44.627 |
![]() |
![]() |
1 | 18 | -15.784 | -15.798 |
![]() |
![]() |
1 | 3 | -44.604 | -44.597 |
![]() |
![]() |
0 | 8 | -15.784 | -15.721 |
![]() |
![]() |
1 | 4 | -43.966 | -43.949 |
![]() |
![]() |
1 | 20 | -15.581 | -15.589 |
![]() |
![]() |
2 | 5 | -21.535 | -21.845 |
![]() |
![]() |
1 | 21 | -15.563 | -15.475 |
![]() |
![]() |
1 | 5 | -21.659 | -22.001 |
![]() |
![]() |
1 | 31 | -11.826 | -12.379 |
![]() |
![]() |
0 | 2 | -21.722 | -22.058 |
![]() |
![]() |
2 | 29 | -11.580 | -12.395 |
![]() |
![]() |
1 | 6 | -21.381 | -21.725 |
![]() |
![]() |
1 | 30 | -11.580 | -12.588 |
![]() |
![]() |
4 | 1 | -19.286 | -19.358 |
![]() |
![]() |
0 | 12 | -11.580 | -12.602 |
![]() |
![]() |
3 | 2 | -19.419 | -19.463 |
![]() |
![]() |
1 | 45 | -10.774 | -10.520 |
![]() |
![]() |
2 | 7 | -19.520 | -19.428 |
![]() |
![]() |
2 | 46 | -10.599 | -10.641 |
![]() |
![]() |
2 | 6 | -19.398 | -19.575 |
![]() |
![]() |
2 | 44 | -10.565 | -10.835 |
![]() |
![]() |
3 | 3 | -19.106 | -19.177 |
![]() |
![]() |
1 | 43 | -10.565 | -10.785 |
![]() |
![]() |
2 | 8 | -19.194 | -19.208 |
![]() |
![]() |
0 | 18 | -10.565 | -10.625 |
![]() |
![]() |
1 | 7 | -19.253 | -19.258 | ||||||
Fe XXI | |||||||||||
![]() |
![]() |
2 | 1 | -123.050 | -123.185 |
![]() |
![]() |
2 | 6 | -50.320 | -50.589 |
![]() |
![]() |
1 | 1 | -123.440 | -123.615 |
![]() |
![]() |
3* | 2 | -50.289 | -50.012 |
![]() |
![]() |
0 | 1 | -124.110 | -124.292 |
![]() |
![]() |
3* | 3 | -49.436 | -49.402 |
![]() |
![]() |
2 | 2 | -121.890 | -122.009 |
![]() |
![]() |
2* | 8 | -49.506 | -49.463 |
![]() |
![]() |
0 | 2 | -120.730 | -120.849 |
![]() |
![]() |
2* | 9 | -49.109 | -49.237 |
![]() |
![]() |
2 | 1 | -119.680 | -119.850 |
![]() |
![]() |
1 | 11 | -48.535 | -48.480 |
![]() |
![]() |
3 | 1 | -116.790 | -116.897 |
![]() |
![]() |
3 | 4 | -48.355 | -48.578 |
![]() |
![]() |
2 | 2 | -117.030 | -117.155 |
![]() |
![]() |
3* | 22 | -27.939 | -27.934 |
![]() |
![]() |
1 | 1 | -117.040 | -117.168 |
![]() |
![]() |
2* | 39 | -27.703 | -27.949 |
![]() |
![]() |
2 | 3 | -115.530 | -115.651 |
![]() |
![]() |
1* | 40 | -26.718 | -26.990 |
![]() |
![]() |
1 | 2 | -115.690 | -115.815 |
![]() |
![]() |
3 | 23 | -26.718 | -27.064 |
![]() |
![]() |
0 | 1 | -115.760 | -115.895 |
![]() |
![]() |
2 | 41 | -27.019 | -27.005 |
![]() |
![]() |
1 | 3 | -114.130 | -114.241 |
![]() |
![]() |
1 | 39 | -27.693 | -27.887 |
![]() |
![]() |
2 | 4 | -113.850 | -113.922 |
![]() |
![]() |
2 | 40 | -26.837 | -27.069 |
![]() |
![]() |
1 | 4 | -112.620 | -112.695 |
![]() |
![]() |
3 | 24 | -26.782 | -26.785 |
![]() |
![]() |
2 | 3 | -109.110 | -109.226 |
![]() |
![]() |
3* | 50 | -16.567 | -16.849 |
![]() |
![]() |
1 | 2 | -108.250 | -108.362 |
![]() |
![]() |
1* | 67 | -16.494 | -16.813 |
![]() |
![]() |
0 | 3 | -108.300 | -108.406 |
![]() |
![]() |
2 | 72 | -16.494 | -16.854 |
![]() |
![]() |
2 | 4 | -107.550 | -107.626 |
![]() |
![]() |
3 | 51 | -16.457 | -16.724 |
![]() |
![]() |
0 | 4 | -105.450 | -105.511 |
The total number of oscillator strengths (f-values) for bound-bound
fine structure transitions is 198259 for Ar XIII and is 300079
for Fe XXI. These include both the dipole allowed (
)
and the intercombination (
0) transitions. Complete
sets of f-values for both Ar XIII and Fe XXI are available
electronically.
Partial sets of the oscillator strengths for Ar XIII and Fe XXI
are presented in Tables 5 and 6 respectively.
18 6 | ||||||
0 0 2 1 | ||||||
56 | 136 |
![]() |
![]() |
![]() |
S |
![]() |
1 | 1 | -5.04159E+01 | -4.65272E+01 | -7.432E-02 | 5.734E-02 | 3.009E+09 |
1 | 2 | -5.04159E+01 | -4.58436E+01 | -3.719E-02 | 2.440E-02 | 2.082E+09 |
1 | 3 | -5.04159E+01 | -4.45972E+01 | -7.896E-02 | 4.071E-02 | 7.158E+09 |
1 | 4 | -5.04159E+01 | -4.39490E+01 | -8.538E-03 | 3.961E-03 | 9.561E+08 |
1 | 5 | -5.04159E+01 | -2.20006E+01 | -5.614E-02 | 5.927E-03 | 1.214E+11 |
1 | 6 | -5.04159E+01 | -2.17248E+01 | -3.410E-04 | 3.566E-05 | 7.517E+08 |
1 | 7 | -5.04159E+01 | -1.92584E+01 | -8.122E-01 | 7.820E-02 | 2.111E+12 |
1 | 8 | -5.04159E+01 | -1.91117E+01 | -3.833E-01 | 3.673E-02 | 1.006E+12 |
1 | 9 | -5.04159E+01 | -1.87724E+01 | -8.515E-03 | 8.073E-04 | 2.283E+10 |
1 | 10 | -5.04159E+01 | -1.86813E+01 | -2.095E-02 | 1.980E-03 | 5.649E+10 |
1 | 11 | -5.04159E+01 | -1.86458E+01 | -5.138E-03 | 4.852E-03 | 1.389E+10 |
1 | 12 | -5.04159E+01 | -1.84751E+01 | -1.566E-04 | 1.471E-05 | 4.278E+08 |
1 | 13 | -5.04159E+01 | -1.82444E+01 | -2.107E-01 | 1.965E-02 | 5.839E+11 |
1 | 14 | -5.04159E+01 | -1.79813E+01 | -9.334E-02 | 8.633E-03 | 2.629E+11 |
1 | 15 | -5.04159E+01 | -1.66700E+01 | -1.963E-02 | 1.745E-03 | 5.986E+10 |
1 | 16 | -5.04159E+01 | -1.66046E+01 | -2.252E-04 | 1.998E-05 | 6.894E+08 |
1 | 17 | -5.04159E+01 | -1.64673E+01 | -2.083E-03 | 1.841E-04 | 6.427E+09 |
1 | 18 | -5.04159E+01 | -1.57979E+01 | -7.669E-03 | 6.646E-04 | 2.461E+10 |
1 | 19 | -5.04159E+01 | -1.57593E+01 | -4.275E-02 | 3.701E-03 | 1.375E+11 |
1 | 20 | -5.04159E+01 | -1.55895E+01 | -1.030E-02 | 8.873E-04 | 3.346E+10 |
1 | 21 | -5.04159E+01 | -1.54751E+01 | -1.992E-02 | 1.710E-03 | 6.512E+10 |
1 | 22 | -5.04159E+01 | -1.54647E+01 | -8.200E-03 | 7.038E-04 | 2.682E+10 |
1 | 23 | -5.04159E+01 | -1.48961E+01 | -2.989E-04 | 2.525E-05 | 1.010E+09 |
1 | 24 | -5.04159E+01 | -1.46203E+01 | -5.201E-03 | 4.359E-04 | 1.784E+10 |
1 | 25 | -5.04159E+01 | -1.42630E+01 | -1.841E-03 | 1.528E-04 | 6.443E+09 |
1 | 26 | -5.04159E+01 | -1.33759E+01 | -4.990E-04 | 4.042E-05 | 1.833E+09 |
1 | 27 | -5.04159E+01 | -1.31269E+01 | -3.161E-05 | 2.543E-06 | 1.177E+08 |
1 | 28 | -5.04159E+01 | -1.30556E+01 | -1.439E-06 | 1.156E-07 | 5.377E+06 |
1 | 29 | -5.04159E+01 | -1.26698E+01 | -4.509E-03 | 3.584E-04 | 1.720E+10 |
1 | 30 | -5.04159E+01 | -1.25883E+01 | -2.180E-03 | 1.729E-04 | 8.353E+09 |
1 | 31 | -5.04159E+01 | -1.23791E+01 | -1.555E-03 | 1.226E-04 | 6.024E+09 |
1 | 32 | -5.04159E+01 | -1.19016E+01 | -4.197E-03 | 3.269E-04 | 1.667E+10 |
1 | 33 | -5.04159E+01 | -1.18386E+01 | -1.906E-03 | 1.482E-04 | 7.595E+09 |
1 | 34 | -5.04159E+01 | -1.17009E+01 | -4.479E-03 | 3.471E-04 | 1.797E+10 |
1 | 35 | -5.04159E+01 | -1.15532E+01 | -6.841E-04 | 5.281E-05 | 2.766E+09 |
1 | 36 | -5.04159E+01 | -1.14449E+01 | -2.326E-03 | 1.791E-04 | 9.457E+09 |
1 | 37 | -5.04159E+01 | -1.13763E+01 | -3.650E-03 | 2.805E-04 | 1.489E+10 |
1 | 38 | -5.04159E+01 | -1.13214E+01 | -5.940E-03 | 4.558E-04 | 2.431E+10 |
1 | 39 | -5.04159E+01 | -1.12634E+01 | -4.570E-02 | 3.502E-03 | 1.876E+11 |
1 | 40 | -5.04159E+01 | -1.11175E+01 | -2.745E-02 | 2.096E-03 | 1.135E+11 |
1 | 41 | -5.04159E+01 | -1.10946E+01 | -4.751E-03 | 3.625E-04 | 1.967E+10 |
1 | 42 | -5.04159E+01 | -1.09356E+01 | -1.423E-02 | 1.081E-03 | 5.940E+10 |
1 | 43 | -5.04159E+01 | -1.07848E+01 | -8.384E-02 | 6.347E-03 | 3.526E+11 |
1 | 44 | -5.04159E+01 | -1.06338E+01 | -1.724E-01 | 1.300E-02 | 7.306E+11 |
1 | 45 | -5.04159E+01 | -1.05204E+01 | -7.928E-03 | 5.962E-04 | 3.379E+10 |
1 | 46 | -5.04159E+01 | -1.03856E+01 | -7.162E-05 | 5.367E-06 | 3.073E+08 |
1 | 47 | -5.04159E+01 | -9.45149E+00 | -1.226E-03 | 8.979E-05 | 5.508E+09 |
1 | 48 | -5.04159E+01 | -9.40487E+00 | -5.841E-05 | 4.273E-06 | 2.630E+08 |
1 | 49 | -5.04159E+01 | -9.36936E+00 | -1.525E-06 | 1.115E-07 | 6.878E+06 |
1 | 50 | -5.04159E+01 | -8.69880E+00 | -7.136E-06 | 5.132E-07 | 3.325E+07 |
26 6 | ||||||
0 0 2 1 | ||||||
64 | 157 |
![]() |
![]() |
![]() |
S |
![]() |
1 | 1 | -1.24292E+02 | -1.17168E+02 | -8.556E-02 | 3.603E-02 | 1.163E+10 |
1 | 2 | -1.24292E+02 | -1.15815E+02 | -2.267E-02 | 8.023E-03 | 4.362E+09 |
1 | 3 | -1.24292E+02 | -1.14241E+02 | -3.606E-02 | 1.076E-02 | 9.752E+09 |
1 | 4 | -1.24292E+02 | -1.12695E+02 | -1.038E-04 | 2.685E-05 | 3.738E+07 |
1 | 5 | -1.24292E+02 | -5.45579E+01 | -5.459E-02 | 2.348E-03 | 7.108E+11 |
1 | 6 | -1.24292E+02 | -5.36838E+01 | -2.443E-06 | 1.038E-07 | 3.261E+07 |
1 | 7 | -1.24292E+02 | -4.98528E+01 | -1.097E+00 | 4.421E-02 | 1.628E+13 |
1 | 8 | -1.24292E+02 | -4.92676E+01 | -2.376E-01 | 9.501E-03 | 3.581E+12 |
1 | 9 | -1.24292E+02 | -4.89841E+01 | -6.728E-02 | 2.680E-03 | 1.022E+12 |
1 | 10 | -1.24292E+02 | -4.87720E+01 | -2.967E-02 | 1.179E-03 | 4.530E+11 |
1 | 11 | -1.24292E+02 | -4.84796E+01 | -2.779E-02 | 1.100E-03 | 4.277E+11 |
1 | 12 | -1.24292E+02 | -4.79949E+01 | -4.288E-02 | 1.686E-03 | 6.684E+11 |
1 | 13 | -1.24292E+02 | -4.78167E+01 | -1.718E-01 | 6.739E-03 | 2.690E+12 |
1 | 14 | -1.24292E+02 | -4.69872E+01 | -2.536E-02 | 9.842E-04 | 4.058E+11 |
1 | 15 | -1.24292E+02 | -4.57908E+01 | -3.615E-02 | 1.382E-03 | 5.965E+11 |
1 | 16 | -1.24292E+02 | -4.51108E+01 | -4.164E-03 | 1.578E-04 | 6.990E+10 |
1 | 17 | -1.24292E+02 | -4.48241E+01 | -1.864E-03 | 7.037E-05 | 3.151E+10 |
1 | 18 | -1.24292E+02 | -4.43456E+01 | -1.420E-03 | 5.329E-05 | 2.431E+10 |
1 | 19 | -1.24292E+02 | -4.40629E+01 | -1.372E-02 | 5.130E-04 | 2.364E+11 |
1 | 20 | -1.24292E+02 | -4.38519E+01 | -1.681E-02 | 6.269E-04 | 2.912E+11 |
1 | 21 | -1.24292E+02 | -4.33769E+01 | -4.298E-02 | 1.594E-03 | 7.534E+11 |
1 | 22 | -1.24292E+02 | -4.26163E+01 | -1.653E-03 | 6.072E-05 | 2.953E+10 |
1 | 23 | -1.24292E+02 | -4.22948E+01 | -7.745E-03 | 2.834E-04 | 1.394E+11 |
1 | 24 | -1.24292E+02 | -4.18241E+01 | -1.151E-02 | 4.187E-04 | 2.096E+11 |
1 | 25 | -1.24292E+02 | -4.13257E+01 | -9.296E-04 | 3.361E-05 | 1.713E+10 |
1 | 26 | -1.24292E+02 | -3.98368E+01 | -8.523E-04 | 3.028E-05 | 1.628E+10 |
1 | 27 | -1.24292E+02 | -3.91261E+01 | -5.482E-07 | 1.931E-08 | 1.065E+07 |
1 | 28 | -1.24292E+02 | -3.89117E+01 | -2.576E-06 | 9.051E-08 | 5.028E+07 |
1 | 29 | -1.24292E+02 | -3.81248E+01 | -3.895E-03 | 1.356E-04 | 7.743E+10 |
1 | 30 | -1.24292E+02 | -3.72353E+01 | -3.496E-03 | 1.205E-04 | 7.093E+10 |
1 | 31 | -1.24292E+02 | -3.68057E+01 | -3.001E-05 | 1.029E-06 | 6.150E+08 |
1 | 32 | -1.24292E+02 | -3.66023E+01 | -2.169E-03 | 7.420E-05 | 4.465E+10 |
1 | 33 | -1.24292E+02 | -3.62569E+01 | -1.857E-03 | 6.328E-05 | 3.853E+10 |
1 | 34 | -1.24292E+02 | -3.56225E+01 | -6.271E-04 | 2.122E-05 | 1.320E+10 |
1 | 35 | -1.24292E+02 | -3.52504E+01 | -4.418E-04 | 1.489E-05 | 9.379E+09 |
1 | 36 | -1.24292E+02 | -3.41344E+01 | -2.004E-04 | 6.668E-06 | 4.361E+09 |
1 | 37 | -1.24292E+02 | -2.96152E+01 | -3.262E-03 | 1.034E-04 | 7.829E+10 |
1 | 38 | -1.24292E+02 | -2.86486E+01 | -5.945E-03 | 1.865E-04 | 1.456E+11 |
1 | 39 | -1.24292E+02 | -2.78866E+01 | -1.027E-01 | 3.196E-03 | 2.556E+12 |
1 | 40 | -1.24292E+02 | -2.69896E+01 | -1.375E-01 | 4.239E-03 | 3.485E+12 |
1 | 41 | -1.24292E+02 | -2.67722E+01 | -5.394E-03 | 1.659E-04 | 1.373E+11 |
1 | 42 | -1.24292E+02 | -2.51918E+01 | -1.245E-03 | 3.769E-05 | 3.273E+10 |
1 | 43 | -1.24292E+02 | -2.48551E+01 | -3.036E-02 | 9.160E-02 | 8.038E+11 |
1 | 44 | -1.24292E+02 | -2.47189E+01 | -6.847E-04 | 2.063E-05 | 1.818E+10 |
1 | 45 | -1.24292E+02 | -2.44906E+01 | -1.546E-02 | 4.647E-04 | 4.124E+11 |
1 | 46 | -1.24292E+02 | -2.40150E+01 | -5.308E-02 | 1.588E-03 | 1.429E+12 |
1 | 47 | -1.24292E+02 | -2.33917E+01 | -9.461E-06 | 2.813E-07 | 2.579E+08 |
1 | 48 | -1.24292E+02 | -2.29626E+01 | -1.697E-06 | 5.024E-08 | 4.664E+07 |
1 | 49 | -1.24292E+02 | -2.29205E+01 | -3.144E-05 | 9.304E-07 | 8.651E+08 |
1 | 50 | -1.24292E+02 | -2.20492E+01 | -4.263E-03 | 1.251E-04 | 1.193E+11 |
A set of transition probabilities for both Ar XIII and Fe XXI has been reprocessed such that observed energy differences, rather than the calculated ones, are used to obtain the f- and A-values from BPRM line strengths (S). The S-values are energy independent quantities. As the observed energies have lower uncertainties than the calculated ones, use of them, instead of the calculated energies, with the S-values (Eqs. 7 and 8) improves the accuracy of the f- and A-values for the relevant transitions. (This is a commonly used procedure adopted first in the NIST compilation.) The astrophysical models also in general use the observed transition energies for the relevant f-, S and A-values. For any comparison or spectral diagnostics, therefore, values from these sets should be used.
The reprocessing of f- and A-values has been carried out for all
the allowed transitions (
)
among the observed levels.
The set consists of 333
transitions of Ar XII and 184 of Fe XXI (these sets are also available
electronically). Sample sets of the reprocessed oscillator strengths
are presented in Tables 7a and 8a for Ar XIII and Fe XXI.
Ci | Cj |
![]() |
![]() |
gi(Ii) | gj(Ij) |
![]() |
![]() |
f |
![]() |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (1) | 50.3320 | 46.4760 | 7.370E-02 | 2.93E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (2) | 50.3320 | 45.8140 | 3.675E-02 | 2.01E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (3) | 50.3320 | 44.6040 | 7.773E-02 | 6.83E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (4) | 50.3320 | 43.9660 | 8.405E-03 | 9.12E+08 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (5) | 50.3320 | 21.6590 | 5.665E-02 | 1.25E+11 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (6) | 50.3320 | 21.3810 | 3.441E-04 | 7.72E+08 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (7) | 50.3320 | 19.2530 | 8.101E-01 | 2.10E+12 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (8) | 50.3320 | 19.0370 | 3.832E-01 | 1.00E+12 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (9) | 50.3320 | 18.7400 | 8.501E-03 | 2.27E+10 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (16) | 50.3320 | 17.1260 | 2.212E-04 | 6.53E+08 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (18) | 50.3320 | 15.7840 | 7.654E-03 | 2.45E+10 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (20) | 50.3320 | 15.5810 | 1.028E-02 | 3.32E+10 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (21) | 50.3320 | 15.5630 | 1.982E-02 | 6.41E+10 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (30) | 50.3320 | 11.5800 | 2.233E-03 | 8.98E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (31) | 50.3320 | 11.8260 | 1.574E-03 | 6.25E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (43) | 50.3320 | 10.5650 | 8.413E-02 | 3.56E+11 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (45) | 50.3320 | 10.7740 | 7.861E-03 | 3.29E+10 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (1) | 48.8560 | 46.4760 | 2.257E-04 | 3.42E+06 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (2) | 48.8560 | 45.8140 | 4.438E-04 | 1.10E+07 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (3) | 48.8560 | 44.6040 | 8.290E-03 | 4.01E+08 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (4) | 48.8560 | 43.9660 | 1.314E-01 | 8.41E+09 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (5) | 48.8560 | 21.6590 | 8.977E-04 | 1.78E+09 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (6) | 48.8560 | 21.3810 | 7.492E-02 | 1.51E+11 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (7) | 48.8560 | 19.2530 | 8.055E-03 | 1.89E+10 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (8) | 48.8560 | 19.0370 | 1.741E-03 | 4.15E+09 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (9) | 48.8560 | 18.7400 | 1.227E+00 | 2.98E+12 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (16) | 48.8560 | 17.1260 | 8.095E-03 | 2.18E+10 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (18) | 48.8560 | 15.7840 | 4.672E-02 | 1.37E+11 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (20) | 48.8560 | 15.5810 | 2.188E-01 | 6.49E+11 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (21) | 48.8560 | 15.5630 | 6.007E-04 | 1.78E+09 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (30) | 48.8560 | 11.5800 | 2.184E-03 | 8.13E+09 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (31) | 48.8560 | 11.8260 | 3.867E-03 | 1.42E+10 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (43) | 48.8560 | 10.5650 | 2.516E-02 | 9.88E+10 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (45) | 48.8560 | 10.7740 | 2.355E-01 | 9.14E+11 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 1 (3) | 46.4760 | 41.2420 | 3.321E-02 | 2.19E+10 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 1 (3) | 45.8140 | 41.2420 | 2.436E-02 | 1.23E+10 |
![]() |
![]() |
![]() |
![]() |
3 (3) | 1 (3) | 44.6040 | 41.2420 | 1.657E-02 | 4.51E+09 |
![]() |
![]() |
![]() |
![]() |
3 (4) | 1 (3) | 43.9660 | 41.2420 | 1.568E-03 | 2.80E+08 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (5) | 41.2420 | 21.6590 | 2.841E-06 | 2.92E+06 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (6) | 41.2420 | 21.3810 | 9.904E-07 | 1.05E+06 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (7) | 41.2420 | 19.2530 | 7.887E-06 | 1.02E+07 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (8) | 41.2420 | 19.0370 | 2.720E-05 | 3.59E+07 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (9) | 41.2420 | 18.7400 | 6.594E-06 | 8.94E+06 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (16) | 41.2420 | 17.1260 | 9.606E-09 | 1.50E+04 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (18) | 41.2420 | 15.7840 | 4.387E-04 | 7.61E+08 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (20) | 41.2420 | 15.5810 | 5.815E-04 | 1.03E+09 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (21) | 41.2420 | 15.5630 | 1.354E-02 | 2.39E+10 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (30) | 41.2420 | 11.5800 | 3.678E-07 | 8.66E+05 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (31) | 41.2420 | 11.8260 | 1.251E-05 | 2.90E+07 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (43) | 41.2420 | 10.5650 | 1.511E-02 | 3.81E+10 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (45) | 41.2420 | 10.7740 | 4.366E-04 | 1.09E+09 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 1 (1) | 50.2430 | 45.8170 | 2.071E-02 | 9.78E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (2) | 45.8170 | 41.2860 | 4.223E-02 | 2.32E+09 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 1 (2) | 50.2430 | 21.7220 | 1.874E-02 | 3.67E+11 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 1 (2) | 41.2860 | 21.7220 | 7.065E-07 | 6.52E+06 |
Ci | Cj |
![]() |
![]() |
gi(Ii) | gj(Ij) | fij(O) | fij(P) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1(1) | 3(1) | 8.267-21 | 7.370-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 3(1) | 1.163-21 | 1.078-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 5(2) | 5.865-21 | 5.352-2 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 3(2) | 1.487-41 | 9.623-6 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 5(2) | 3.399-31 | 2.623-3 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 7(1) | 5.037-21 | 4.507-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 15 | 5.33-22 | 5.209-2 | ||
![]() |
![]() |
![]() |
![]() |
1(1) | 3(2) | 5.750-21 | |||
![]() |
![]() |
![]() |
![]() |
3(1) | 1(1) | 2.347-21 | 2.071-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 3(2) | 2.642-21 | 1.574-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 5(3) | 1.622-21 | 1.318-2 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 3(2) | 1.421-21 | 1.947-2 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 5(3) | 5.865-21 | 5.271-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 9 | 5.96-22 | 6.096-2 | ||
![]() |
![]() |
![]() |
![]() |
1(1) | 3(3) | 7.053-21 | 7.773-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 3(3) | 7.163-21 | 7.544-2 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 3(3) | 8.013-21 | 6.635-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 3 | 7.0-22 | 7.060-2 | ||
![]() |
![]() |
![]() |
![]() |
1(1) | 3(4) | 7.251-61 | 8.405-3 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 3(4) | 1.690-31 | 3.256-3 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 3(4) | 6.231-61 | 5.59E-6 | ||
![]() |
![]() |
![]() |
![]() |
1(2) | 3(1) | 3.263-41 | 2.257-4 | ||
![]() |
![]() |
![]() |
![]() |
1(2) | 3(2) | 7.137-41 | 4.438-4 | ||
![]() |
![]() |
![]() |
![]() |
1(2) | 3(3) | 9.600-41 | 8.290-3 | ||
![]() |
![]() |
![]() |
![]() |
1(2) | 3(4) | 1.514-11,1.35-12 | 1.314-1 | ||
![]() |
![]() |
![]() |
![]() |
1(1) | 3(5) | 4.966-21 | 5.665-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 1(2) | 1.734-21 | 1.874-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 3(5) | 1.157-21 | 1.431-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 5(5) | 2.194-21 | 2.357-2 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 3(5) | 1.388-21 | 1.110-2 | ||
![]() |
![]() |
![]() |
![]() |
5(1) | 5(5) | 3.843-21 | 4.274-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 9 | 6.07-22 | 5.507-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 1(3) | 3.817-21 | 3.321-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 3(2) | 3.765-21 | 3.720-2 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 5(3) | 4.857-31 | 3.430-3 | ||
![]() |
![]() |
![]() |
![]() |
15 | 9 | 6.867-22 | 1.452-2 | ||
![]() |
![]() |
![]() |
![]() |
3(3) | 1(3) | 7.175-21 | 1.657-2 | ||
![]() |
![]() |
![]() |
![]() |
3(3) | 3(2) | 6.660-21 | 5.504-2 | ||
![]() |
![]() |
![]() |
![]() |
3(3) | 5(3) | 5.916-21 | 9.966-2 | ||
![]() |
![]() |
![]() |
![]() |
3 | 9 | 1.58-12 | 1.716-1 | ||
![]() |
![]() |
![]() |
![]() |
3(4) | 1(3) | 8.069-51 | 1.568-3 | ||
![]() |
![]() |
![]() |
![]() |
3(4) | 3(2) | 1.103-31 | 1.809-3 | ||
![]() |
![]() |
![]() |
![]() |
3(4) | 5(3) | -3.784-41 | 4.007-4 | ||
![]() |
![]() |
![]() |
![]() |
3(1) | 5(1) | 3.752-5 | 7.28+53 | 7.01+5 | |
![]() |
![]() |
![]() |
![]() |
5(1) | 5(1) | 4.810-5 | 1.35+63 | 1.34+6 | |
![]() |
![]() |
![]() |
![]() |
5(2) | 5(1) | 4.730-7 | 7.15+33 | 6.26+3 |
1 Zhang & Sampson (1997), 2 Luo & Pradhan (1989), 3 Mendoza et al. (1999). |
Ci | Cj |
![]() |
![]() |
gi(Ii) | gj(Ij) |
![]() |
![]() |
f |
![]() |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (1) | 124.1100 | 117.0400 | 8.491E-02 | 1.14E+10 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (2) | 124.1100 | 115.6900 | 2.252E-02 | 4.27E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (3) | 124.1100 | 114.1300 | 3.579E-02 | 9.55E+09 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (4) | 124.1100 | 112.6200 | 1.028E-04 | 3.63E+07 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (11) | 124.1100 | 48.5350 | 2.771E-02 | 4.24E+11 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (39) | 124.1100 | 27.6930 | 1.027E-01 | 2.56E+12 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (40) | 124.1100 | 26.7180 | 1.376E-01 | 3.49E+12 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (67) | 124.1100 | 16.4940 | 5.546E-02 | 1.72E+12 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (1) | 120.7300 | 117.0400 | 1.066E-03 | 3.88E+07 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (2) | 120.7300 | 115.6900 | 2.208E-03 | 1.50E+08 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (3) | 120.7300 | 114.1300 | 5.568E-03 | 6.49E+08 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (4) | 120.7300 | 112.6200 | 9.789E-02 | 1.72E+10 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (11) | 120.7300 | 48.5350 | 1.276E+00 | 1.78E+13 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (39) | 120.7300 | 27.6930 | 2.722E-02 | 6.31E+11 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (40) | 120.7300 | 26.7180 | 1.458E-03 | 3.45E+10 |
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (67) | 120.7300 | 16.4940 | 1.678E-03 | 4.88E+10 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 1 (3) | 117.0400 | 108.3000 | 1.911E-02 | 3.52E+10 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 1 (3) | 115.6900 | 108.3000 | 1.379E-02 | 1.81E+10 |
![]() |
![]() |
![]() |
![]() |
3 (3) | 1 (3) | 114.1300 | 108.3000 | 2.095E-02 | 1.72E+10 |
![]() |
![]() |
![]() |
![]() |
3 (4) | 1 (3) | 112.6200 | 108.3000 | 3.176E-05 | 1.43E+07 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (11) | 108.3000 | 48.5350 | 1.067E-06 | 1.02E+07 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (39) | 108.3000 | 27.6930 | 2.334E-05 | 4.06E+08 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (40) | 108.3000 | 26.7180 | 1.608E-04 | 2.87E+09 |
![]() |
![]() |
![]() |
![]() |
1 (3) | 3 (67) | 108.3000 | 16.4940 | 5.095E-04 | 1.15E+10 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 1 (4) | 117.0400 | 105.4500 | 8.736E-05 | 2.83E+08 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 1 (4) | 115.6900 | 105.4500 | 1.739E-03 | 4.39E+09 |
![]() |
![]() |
![]() |
![]() |
3 (3) | 1 (4) | 114.1300 | 105.4500 | 2.770E-03 | 5.03E+09 |
![]() |
![]() |
![]() |
![]() |
3 (4) | 1 (4) | 112.6200 | 105.4500 | 6.055E-02 | 7.50E+10 |
![]() |
![]() |
![]() |
![]() |
1 (4) | 3 (11) | 105.4500 | 48.5350 | 8.194E-05 | 7.11E+08 |
![]() |
![]() |
![]() |
![]() |
1 (4) | 3 (39) | 105.4500 | 27.6930 | 7.892E-06 | 1.28E+08 |
![]() |
![]() |
![]() |
![]() |
1 (4) | 3 (40) | 105.4500 | 26.7180 | 1.302E-05 | 2.16E+08 |
![]() |
![]() |
![]() |
![]() |
1 (4) | 3 (67) | 105.4500 | 16.4940 | 3.718E-08 | 7.88E+05 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 1 (1) | 123.4400 | 115.7600 | 1.537E-02 | 2.18E+10 |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (2) | 115.7600 | 108.2500 | 3.117E-02 | 4.71E+09 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (1) | 123.4400 | 117.0400 | 2.453E-03 | 8.07E+08 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (2) | 123.4400 | 115.6900 | 3.234E-02 | 1.56E+10 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (3) | 123.4400 | 114.1300 | 3.671E-02 | 2.56E+10 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (4) | 123.4400 | 112.6200 | 5.291E-03 | 4.98E+09 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (11) | 123.4400 | 48.5350 | 6.550E-03 | 2.95E+11 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (39) | 123.4400 | 27.6930 | 4.825E-02 | 3.55E+12 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (40) | 123.4400 | 26.7180 | 2.762E-03 | 2.08E+11 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (67) | 123.4400 | 16.4940 | 4.713E-04 | 4.33E+10 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (2) | 117.0400 | 108.2500 | 2.322E-02 | 1.44E+10 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 3 (2) | 115.6900 | 108.2500 | 1.921E-04 | 8.54E+07 |
![]() |
![]() |
![]() |
![]() |
3 (3) | 3 (2) | 114.1300 | 108.2500 | 4.638E-02 | 1.29E+10 |
![]() |
![]() |
![]() |
![]() |
3 (4) | 3 (2) | 112.6200 | 108.2500 | 4.176E-03 | 6.41E+08 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 3 (11) | 108.2500 | 48.5350 | 5.993E-06 | 1.72E+08 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 3 (39) | 108.2500 | 27.6930 | 5.489E-06 | 2.86E+08 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 3 (40) | 108.2500 | 26.7180 | 2.160E-06 | 1.15E+08 |
![]() |
![]() |
![]() |
![]() |
3 (2) | 3 (67) | 108.2500 | 16.4940 | 1.847E-04 | 1.25E+10 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (1) | 123.4400 | 119.6800 | 5.155E-04 | 3.51E+07 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (2) | 123.4400 | 117.0300 | 4.621E-02 | 9.15E+09 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (3) | 123.4400 | 115.5300 | 1.379E-03 | 4.16E+08 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (4) | 123.4400 | 113.8500 | 9.379E-04 | 4.16E+08 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (6) | 123.4400 | 50.3200 | 4.192E-05 | 1.08E+09 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (8) | 123.4400 | 49.5060 | 8.502E-01 | 2.24E+13 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (9) | 123.4400 | 49.1090 | 6.579E-03 | 1.75E+11 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (39) | 123.4400 | 27.7030 | 1.682E-02 | 7.43E+11 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (40) | 123.4400 | 26.8370 | 6.750E-02 | 3.04E+12 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (41) | 123.4400 | 27.0190 | 7.369E-02 | 3.30E+12 |
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (72) | 123.4400 | 16.4940 | 1.839E-02 | 1.01E+12 |
![]() |
![]() |
![]() |
![]() |
5 (1) | 3 (2) | 119.6800 | 108.2500 | 1.586E-04 | 2.77E+08 |
![]() |
![]() |
![]() |
![]() |
5 (2) | 3 (2) | 117.0300 | 108.2500 | 2.093E-02 | 2.16E+10 |
![]() |
![]() |
![]() |
![]() |
5 (3) | 3 (2) | 115.5300 | 108.2500 | 2.219E-02 | 1.57E+10 |
Ci | Cj |
![]() |
![]() |
gi(Ii) | gj(Ij) | fij(O) | fij(P) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (1) | 9.3-21 | 8.49-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (1) | 2.4-31 | 2.45-3 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (2) | 5.1-21 | 4.62-2 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 3 (1) | 1.5-41 | 5.02-3 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 5 (2) | 4.4-51 | 7.64-6 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 7 (1) | 2.95-21 | 2.70-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 15 | 4.5-21,3.71-22 | 4.20-2 | ||
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (2) | 2.25-21 | 2.25-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 1 (1) | 1.70-21 | 1.54-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (2) | 3.54-21 | 3.23-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (3) | 1.2-31 | 1.38-3 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 3 (2) | 4.4-31 | 1.13-2 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 5 (3) | 4.79-21 | 4.46-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 9 | 4.98-21,4.09-22 | 5.03-2 | ||
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (3) | 3.70-21 | 3.58-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (3) | 3.79-21 | 3.67-2 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 3 (3) | 6.0-21 | 4.01-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 3 | 5.1-21,4.68-22 | 3.86-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 5(4) | 9.5-41 | 9.38-4 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 5(4) | 1.3-21 | 1.20-2 | ||
![]() |
![]() |
![]() |
![]() |
1 (1) | 3 (4) | 1.03-4 | |||
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (4) | 5.6-31 | 5.29-3 | ||
![]() |
![]() |
![]() |
![]() |
5 (1) | 3 (4) | 1.6-41 | 8.45-4 | ||
![]() |
![]() |
![]() |
![]() |
5 (2) | 3 (1) | 6.4-41 | 2.96-5 | ||
![]() |
![]() |
![]() |
![]() |
5 (2) | 5 (2) | 2.0-41 | 2.27-4 | ||
![]() |
![]() |
![]() |
![]() |
5 (2) | 7 (1) | 7.0-31 | 6.59-3 | ||
![]() |
![]() |
![]() |
![]() |
5(2) | 3(4) | 6.2-21,5.36-22 | 5.30-2 | ||
![]() |
![]() |
![]() |
![]() |
5 | 5 | 9.2-21,9.14-22 | 8.56-2 | ||
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (4) | 1.04-12 | 9.79-2 | ||
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (1) | 1.5-31 | 1.07-3 | ||
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (2) | 2.4-31 | 2.21-3 | ||
![]() |
![]() |
![]() |
![]() |
1 (2) | 3 (3) | 5.9-31 | 5.57-3 | ||
![]() |
![]() |
![]() |
![]() |
3 (2) | 5(4) | 4.1-31 | 7.81-5 | ||
![]() |
![]() |
![]() |
![]() |
5 (3) | 5(4) | 4.9-31 | 4.79-3 | ||
![]() |
![]() |
![]() |
![]() |
5 (2) | 5 (4) | 1.0-31 | 1.08-3 | ||
![]() |
![]() |
![]() |
![]() |
7 (1) | 5 (4) | 6.2-31 | 5.96-3 | ||
![]() |
![]() |
![]() |
![]() |
3(3) | 1(3) | 2.35-21 | 2.10-2 | ||
![]() |
![]() |
![]() |
![]() |
3(3) | 3(2) | 5.2-21 | 4.64-2 | ||
![]() |
![]() |
![]() |
![]() |
3(3) | 5(3) | 5.6-21 | 6.60-2 | ||
![]() |
![]() |
![]() |
![]() |
3 | 9 | 0.131,0.1122 | 0.133 | ||
![]() |
![]() |
![]() |
![]() |
3(2) | 1(3) | 1.55-21 | 1.38-2 | ||
![]() |
![]() |
![]() |
![]() |
1(1) | 3(2) | 3.41-21 | 3.12-2 | ||
![]() |
![]() |
![]() |
![]() |
3(2) | 3(2) | 3.4-41 | 1.92-4 | ||
![]() |
![]() |
![]() |
![]() |
5(3) | 3(2) | 2.50-21 | 2.22-2 | ||
![]() |
![]() |
![]() |
![]() |
3(2) | 5(3) | 1.84-21 | 2.68-3 | ||
![]() |
![]() |
![]() |
![]() |
5(3) | 5(3) | 1.11-21 | 1.12-2 | ||
![]() |
![]() |
![]() |
![]() |
9 | 9 | 3.6-21,2.62-22 | 2.70-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 1(3) | 2.03-21 | 1.91-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 3 (2) | 2.52-21 | 2.32-2 | ||
![]() |
![]() |
![]() |
![]() |
5 (2) | 3 (2) | 2.20-21 | 2.09-2 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (3) | 1.25-21 | 8.03-4 | ||
![]() |
![]() |
![]() |
![]() |
5 (2) | 5 (3) | 2.92-21 | 2.62-2 | ||
![]() |
![]() |
![]() |
![]() |
7 (1) | 5 (3) | 4.67-21 | 4.23-2 | ||
![]() |
![]() |
![]() |
![]() |
15 | 9 | 5.1-21,4.69-22 | 4.43-2 | ||
![]() |
![]() |
![]() |
![]() |
3(4) | 1(3) | 3.18-5 | |||
![]() |
![]() |
![]() |
![]() |
3(4) | 3(2) | 4.8-31 | 4.18-3 | ||
![]() |
![]() |
![]() |
![]() |
3(4) | 5(3) | 1.9-31 | 2.31-3 | ||
![]() |
![]() |
![]() |
![]() |
3 (1) | 5 (1) | 5.3-41 | 5.155-4 | 3.61+73 | 3.51+7 |
![]() |
![]() |
![]() |
![]() |
5 (1) | 5 (1) | 3.8-41 | 3.72-4 | 3.27+73 | 3.39+7 |
![]() |
![]() |
![]() |
![]() |
5 | 2 | 3.53-5 | 1.46+63 | 1.38+6 |
1 Cheng et al. (1979), 2 Luo & Pradhan (1989), 3 Mendoza et al. (1999). |
![]() |
nj | level indices |
Ar XIII | ||
![]() |
3 | 1,2,3 |
![]() |
6 | 1,2,3,8,12,18 |
![]() |
2 | 1,2 |
![]() |
17 | 1,2,3,4,5,6,7,8,9,16,18,20,21,30,31,43,45 |
![]() |
5 | 1,2,3,4,14 |
![]() |
15 | 1,2,3,4,5,6,7,8,9,15,16,19,29,44,46 |
![]() |
1 | 6 |
![]() |
5 | 1,2,3,4,8 |
![]() |
1 | 1 |
Fe XXI | ||
![]() |
4 | 1,2,3,4 |
![]() |
1 | 1 |
![]() |
2 | 1,2 |
![]() |
8 | 1,2,3,4,11,39,40,67 |
![]() |
4 | 1,2,3,4 |
![]() |
11 | 1,2,3,4,6,8,9,39,40,41,72 |
![]() |
9 | 1,2,3,4,22,23,24,50,51 |
The reprocessed transitions are further ordered in terms of their configurations and LS terms. This enables one to obtain the f-values for the LS multiplets and check the completeness of the set of fine structure components belonging to the multiplet. However, the completeness depends also on the observed set of fine structure levels since the transitions correspond only to the observed levels. The LS multiplets are useful for various comparisons with other calculations and experiment where fine structure transitions can not be resolved. A partial set of these transitions is presented in Table 7b for Ar XIII and Table 8b for Fe XXI (the complete table is available electronically).
The oscillator strengths are compared with other calculations in
Tables 7b for Ar XIII and 8b for Fe XXI.
The oscillator strengths for a large number of fine structure
transitions in Ar XIII and other carbon like ions have been obtained by
Zhang & Sampson (1997) in the relativistic distorted wave
calculations. They consider the transitions among the n = 2 and
n = 3 levels. The other source of transition probabilities for Ar XIII
is TOPbase (the database for the Opacity Project data) where transition
probabilties for LS multiplets are given for states with
.
These values were calculated by Luo & Pradhan (1989)
in the close coupling approximation using non-relativistic R-matrix method.
Comparison of the present BPRM oscillator strengths with the previous
calculations in Table 7b shows that present LS multiplets obtained from
the fine structure components agree quite well with those of Luo and
Pradhan except for the transition,
.
However,
comparison with Zhang and Sampson shows various degrees of agreement.
There is good agreement for some fine structure components compared
to others in the same LS multiplet, e.g. for
.
The largest difference is found in the weak
transitions.
The f-values of Fe XXI have been compiled by Fuhr et al. (1988) and
Shirai et al. (1990) (both references present the same values). They
report mainly the multiconfiguration Dirac-Fock calculations by Cheng
et al. (1979). The other source of large amount of data in LS coupling
is from TOPbase (Cunto et al. 1993) calculated by Luo & Pradhan (1989)
under the Opacity Project. Similar to the above case of Ar XIII, the
Fe XXI oscillator strengths compare well for some but poorly for
other fine structure components within a multiplet of previous
calculations (Table 8b). For example, most of the fine structure
components of the dipole allowed multiplets,
,
have comparable values
from the two calculations, BPRM and Dirac-Fock, except for the weak
transitions. While BPRM f-values agree well with those
by Cheng et al. for the intercombination transitions, 5-5 and 5-7 of
,
they differ considerably for the
transition 5-3. The LS multiplets are compared with those of Luo &
Pradhan (1989) and in general agree very well with the present BPRM
A-values.
Recently Mendoza et al. (1999) have calculated the transition
probabilties for the intercombination transitions
for the carbon isoelectronic
sequence ions. Through extensive relativistic atomic structure
calculations they study the effects of Breit interaction in the
transition probabilties for these weak transitions. They estimate an
accuracy better than 10% for A-values belonging to the ground
levels
and 20% for the
.
Their values for Ar XIII agree
very well with the present BPRM A-values (Table 7b), especially those
to the ground levels; it is 4% for the
5So2 - 3P1and 0.01% for the
transitions. The agreement is
14% for the
for which they assign a larger uncertainty.
For Fe XXI, present f-values for transitions to the ground configuration
levels
agree very well with those
by Cheng et al. The agreement is also quite good with the A-values
obtained in elaborate calculations by Mendoza et al. (1999); about
4% for both the transitions to the ground term,
,
and 5% for the
transition.
Comparison of the present transition probabilities for the intercombination
transitions with those of Mendoza et al. (1999) provides a measure of
uncertainty of the present BPRM results. They studied the effect of Breit
spin-spin and spin-other orbit interactions which
are not included in the present work. The good agreement with them for
these very weak transtions indicate the uncertainty of the present
results to a maximum of 14% for most of the transitions.
The discrepancy between the oscillator strengths in length and velocity
forms (
and
)
is an indicator of accuracy consistent with the
method of calculations. In the present results, it is found that the
dispersion of the
and
values for Fe XXI is mainly in the very
weak transitons. However, the dispersion is larger for Ar XIII; it is
expected that the dispersion is caused mainly by the values of
.
Inclusion of more configurations in the Ar XIII wavefunction expansion
could have improved the agreement; n = 3 configurations are still
important and should be included in the target as spectroscopic
configurations. However, that is computationally intractable in the
BPRM calculations. It may be noted that the length form in a close
coupling approximation is more accurate than the velocity
form as it depends more on the asymptotic form of the wavefunction
which is better represented in the R-matrix calculations.
Copyright The European Southern Observatory (ESO)