next previous
Up: Atomic data from the


Subsections

4 Results and discussions

The fine structure energy levels and oscillator strengths for the dipole allowed and the intercombination transitions are discussed in separate subsections below.

4.1 Energy levels

A total of 1274 bound fine structure energy levels of Ar XIII and 1611 levels of Fe XXI are obtained. These correspond to total angular momenta of 0 $\leq J \leq$ 7 of both even and odd parities formed from spin multiplicities of 2S+1 = 5, 3, 1, and total orbital angular momenta of 0 $\leq L\leq$ 9 with $n\leq$ 10, 0 $\leq l \leq (n-1)$. The levels are presented in two formats: (i) in $J\pi $ order for practical applications and (ii) in LS term order for spectroscopy and completeness check up.

Tables 2a and 3a present a partial set of energy levels of Ar XIII and Fe XXI, respectively, in format (i), i.e., in $J\pi $ order (the complete tables are available electronically). At the top of each set. NJ is the total number of energy levels for symmetry of $J\pi $. For example, there are 56 fine structure levels of Ar XIII with $J\pi $ = $0^{\rm e}$. However, in the table, only part of the levels belonging to symmetry $J\pi $ is presented for illustration. The levels are identified with the configuration and LS term of the core and the outer electron quantum numbers. The effective quantum number, $\nu~=~z/\sqrt(E-E_{\rm t})$ where $E_{\rm t}$ is the immediate target threshold, is given next to the energies. However, $\nu$ is not given for the equivalent electron levels as it is not defined for these levels. Each level is assigned to one or more LS terms in the last column. If number of possible term is more than one, all are specified. However, the proper term from a multiple possibilities can be determined from Hund's rule; the term with higher angular momentum lies lower in energy. For example, the three levels 4, 5, and 6 of set $J\pi $ = 1$^{\rm e}$ in Table 2a are assigned with 3 possible terms, $^3(SPD)^{\rm e}$, whereupon the first level, i.e., level 4 can be designated as the $^3{\rm D^e}$, while level 5 is $^3{\rm P^e}$, and level 6 is $^3{\rm S^e}$. One reason for specifying all possible terms is that the order of calculated energy levels may not match exactly that of the measured ones. The other reason is that Hund's rule may not apply to all cases for complex ions; nonetheless it is useful to establish completeness. Similar sets of levels for Fe XXI are presented in Table 3a.

Tables 2b and 3b present the energy levels of Ar XIII and Fe XXI, respectively, in ascending order regardless of $J\pi $ values, and are grouped together according to the same configuration to show the correspondence between two sets of representations, in J-levels and in LS terms. (Listing of the lowest levels of equivalent electron states are omitted as they are given in energy comparison table). The grouping of levels provides the check for completeness of sets of energy levels that should belong to the corresponding LS term, and detects any missing level. The title line of each set of levels in the tables lists spin multiplicity (2S+1), parity, all possible L-values that can be formed from the core or target term, and outer or the valence electron angular momentum. The J-values for each possible LS term are specified within the parentheses next to the value of L. "Nlv'' is the total number of J-levels that are expected from this set of LS terms. This line is followed by the set of BPRM energy levels of same configurations. "Nlv(c)'', at the end of the set, specifies the total number of J-levels obtained. If Nlv = Nlv(c) for a set, the calculated energy set is complete. The correspondence of couplings and completeness of levels are carried out by the program PRCBPID which also detects and prints the missing levels. For example, in the set for $^3({\rm G,H,I)^e}$ for Ar XIII near the end of Table 2b, the set is found to be incomplete where four levels of J=5, 4, 6, 5 are missing. Sets with missing levels usually lie in the high energy region. Each level of a set is further identified by all possible LS terms (specified in the last column of the set). The multiple LS terms can be reduced to the most probable (but approximately) one using Hund's rule, as explained above. It may be noted that levels are grouped consistently in closely spaced energies and in effective quantum numbers confirming proper designation of the LS terms.

The BPRM energy levels for Ar XIII and Fe XXI are compared in Table 4 with the limited number of levels observed. The 55 observed levels of Ar XIII (Kelly, NIST) are not in the compiled list by the NIST. However, the calculated fine structure energies agree with these observed ones to about 1% for most of the levels. The difference is upto 9%. The agreement between the observed and calculated energies is much better for Fe XXI (Table 4).

 
Table 4: Comparison of absolute calculated BPRM energies ($E_{\rm c}$) with the observed ones ($E_{\rm o}$, Sugar & Corliss 1985) for Ar XIII and Fe XXI. IJ is the level index for the energy position in symmetry $J\pi $. The asterisk next to the J-value indicates that the term has incomplete set of observed fine structure levels
Level J IJ $E_{\rm o}$(Ry) $E_{\rm c}$(Ry) Level J IJ $E_{\rm o}$(Ry) $E_{\rm c}$(Ry)
Ar XIII

${\rm 2s^22p^2} $
${\rm ^3P}$ 2 1 -50.133 -50.209 ${\rm 2s^22p3d} $ ${\rm ^3P^o}$ 2 9 -19.053 -19.149
${\rm 2s^22p^2} $ ${\rm ^3P}$ 1 1 -50.243 -50.326 ${\rm 2s^22p3d} $ ${\rm ^3P^o}$ 1 8 -19.037 -19.112
${\rm 2s^22p^2} $ ${\rm ^3P}$ 0 1 -50.332 -50.416 ${\rm 2s^22p3d} $ ${\rm ^3P^o}$ 0 3 -19.025 -19.079
${\rm 2s^22p^2} $ ${\rm ^1D}$ 2 2 -49.558 -49.621 ${\rm 2s^22p3d} $ ${\rm ^1P^o}$ 1 9 -18.740 -18.772
${\rm 2s^22p^2} $ ${\rm ^1S}$ 0 2 -48.856 -48.905 ${\rm 2s^22p3d} $ ${\rm ^1F^o}$ 3 4 -18.736 -18.787
${\rm 2s2p^3} $ ${\rm ^5S^o}$ 2 1 -48.274 -48.346 ${\rm 2s2p^23p} $ ${\rm ^3D^o}$ 3 8 -17.126 -16.822
${\rm 2s2p^3} $ ${\rm ^3D^o}$ 3 1 -46.469 -46.508 ${\rm 2s2p^23p} $ ${\rm ^3D^o}$ 2 16 -17.126 -16.805
${\rm 2s2p^3} $ ${\rm ^3D^o}$ 2 2 -46.480 -46.533 ${\rm 2s2p^23p} $ ${\rm ^3D^o}$ 1 16 -17.126 -16.605
${\rm 2s2p^3} $ ${\rm ^3D^o}$ 1 1 -46.476 -46.527 ${\rm 2s2p^2(^4P)3d}$ ${\rm ^5P}$ 3* 6 -17.117 -17.281
${\rm 2s2p^3} $ ${\rm ^3P^o}$ 2 3 -45.803 -45.826 ${\rm 2s2p^2(^4P)3d}$ ${\rm ^5P}$ 2* 14 -17.074 -17.274
${\rm 2s2p^3} $ ${\rm ^3P^o}$ 1 2 -45.814 -45.844 ${\rm 2s2p^23p} $ ${\rm ^1D^o}$ 2 15 -16.019 -16.867
${\rm 2s2p^3} $ ${\rm ^3P^o}$ 0 1 -45.817 -45.852 ${\rm 2s2p^23p} $ ${\rm ^3P^o}$ 2 19 -15.784 -15.731
${\rm 2s2p^3} $ ${\rm ^1D^o}$ 2 4 -44.630 -44.627 ${\rm 2s2p^23p} $ ${\rm ^3P^o}$ 1 18 -15.784 -15.798
${\rm 2s2p^3} $ ${\rm ^3S^o}$ 1 3 -44.604 -44.597 ${\rm 2s2p^23p} $ ${\rm ^3P^o}$ 0 8 -15.784 -15.721
${\rm 2s2p^3} $ ${\rm ^1P^o}$ 1 4 -43.966 -43.949 ${\rm 2s2p^23p} $ ${\rm ^1P^o}$ 1 20 -15.581 -15.589
${\rm 2s^22p3s} $ ${\rm ^3P^o}$ 2 5 -21.535 -21.845 ${\rm 2s2p^23p} $ ${\rm ^3S^o}$ 1 21 -15.563 -15.475
${\rm 2s^22p3s} $ ${\rm ^3P^o}$ 1 5 -21.659 -22.001 ${\rm 2s^22p4s} $ ${\rm ^1P^o}$ 1 31 -11.826 -12.379
${\rm 2s^22p3s} $ ${\rm ^3P^o}$ 0 2 -21.722 -22.058 ${\rm 2s^22p4s} $ ${\rm ^3P^o}$ 2 29 -11.580 -12.395
${\rm 2s^22p3s} $ ${\rm ^1P^o}$ 1 6 -21.381 -21.725 ${\rm 2s^22p4s} $ ${\rm ^3P^o}$ 1 30 -11.580 -12.588
${\rm 2s^22p3d} $ ${\rm ^3F^o}$ 4 1 -19.286 -19.358 ${\rm 2s^22p4s} $ ${\rm ^3P^o}$ 0 12 -11.580 -12.602
${\rm 2s^22p3d} $ ${\rm ^3F^o}$ 3 2 -19.419 -19.463 ${\rm 2s^22p4d} $ ${\rm ^1P^o}$ 1 45 -10.774 -10.520
${\rm 2s^22p3d} $ ${\rm ^3F^o}$ 2 7 -19.520 -19.428 ${\rm 2s^22p4d} $ ${\rm ^1D^o}$ 2 46 -10.599 -10.641
${\rm 2s^22p3d} $ ${\rm ^1D^o}$ 2 6 -19.398 -19.575 ${\rm 2s^22p4d} $ ${\rm ^3P^o}$ 2 44 -10.565 -10.835
${\rm 2s^22p3d} $ ${\rm ^3D^o}$ 3 3 -19.106 -19.177 ${\rm 2s^22p4d} $ ${\rm ^3P^o}$ 1 43 -10.565 -10.785
${\rm 2s^22p3d} $ ${\rm ^3D^o}$ 2 8 -19.194 -19.208 ${\rm 2s^22p4d} $ ${\rm ^3P^o}$ 0 18 -10.565 -10.625
${\rm 2s^22p3d} $ ${\rm ^3D^o}$ 1 7 -19.253 -19.258            
Fe XXI

${\rm 2s^22p^2} $
${\rm ^3P}$ 2 1 -123.050 -123.185 ${\rm 2s^22p3d} $ ${\rm ^1D^o}$ 2 6 -50.320 -50.589
${\rm 2s^22p^2} $ ${\rm ^3P}$ 1 1 -123.440 -123.615 ${\rm 2s^22p3d} $ ${\rm ^3F^o}$ 3* 2 -50.289 -50.012
${\rm 2s^22p^2} $ ${\rm ^3P}$ 0 1 -124.110 -124.292 ${\rm 2s^22p3d} $ ${\rm ^3D^o}$ 3* 3 -49.436 -49.402
${\rm 2s^22p^2} $ ${\rm ^1D}$ 2 2 -121.890 -122.009 ${\rm 2s^22p3d} $ ${\rm ^3D^o}$ 2* 8 -49.506 -49.463
${\rm 2s^22p^2} $ ${\rm ^1S}$ 0 2 -120.730 -120.849 ${\rm 2s^22p3d} $ ${\rm ^3P^o}$ 2* 9 -49.109 -49.237
${\rm 2s2p^3} $ ${\rm ^5S^o}$ 2 1 -119.680 -119.850 ${\rm 2s^22p3d} $ ${\rm ^1P^o}$ 1 11 -48.535 -48.480
${\rm 2s2p^3} $ ${\rm ^3D^o}$ 3 1 -116.790 -116.897 ${\rm 2s^22p3d} $ ${\rm ^1F^o}$ 3 4 -48.355 -48.578
${\rm 2s2p^3} $ ${\rm ^3D^o}$ 2 2 -117.030 -117.155 ${\rm 2s^22p4d} $ ${\rm ^3F^o}$ 3* 22 -27.939 -27.934
${\rm 2s2p^3} $ ${\rm ^3D^o}$ 1 1 -117.040 -117.168 ${\rm 2s^22p4d} $ ${\rm ^3P^o}$ 2* 39 -27.703 -27.949
${\rm 2s2p^3} $ ${\rm ^3P^o}$ 2 3 -115.530 -115.651 ${\rm 2s^22p4d} $ ${\rm ^3P^o}$ 1* 40 -26.718 -26.990
${\rm 2s2p^3} $ ${\rm ^3P^o}$ 1 2 -115.690 -115.815 ${\rm 2s^22p4d} $ ${\rm ^3D^o}$ 3 23 -26.718 -27.064
${\rm 2s2p^3} $ ${\rm ^3P^o}$ 0 1 -115.760 -115.895 ${\rm 2s^22p4d} $ ${\rm ^3D^o}$ 2 41 -27.019 -27.005
${\rm 2s2p^3} $ ${\rm ^3S^o}$ 1 3 -114.130 -114.241 ${\rm 2s^22p4d} $ ${\rm ^3D^o}$ 1 39 -27.693 -27.887
${\rm 2s2p^3} $ ${\rm ^1D^o}$ 2 4 -113.850 -113.922 ${\rm 2s^22p4d} $ ${\rm ^1D^o}$ 2 40 -26.837 -27.069
${\rm 2s2p^3} $ ${\rm ^1P^o}$ 1 4 -112.620 -112.695 ${\rm 2s^22p4d} $ ${\rm ^1F^o}$ 3 24 -26.782 -26.785
${\rm 2p^4}$ ${\rm ^3P}$ 2 3 -109.110 -109.226 ${\rm 2s^22p5d}$ ${\rm ^3D^o}$ 3* 50 -16.567 -16.849
${\rm 2p^4}$ ${\rm ^3P}$ 1 2 -108.250 -108.362 ${\rm 2s^22p5d}$ ${\rm ^3P^o}$ 1* 67 -16.494 -16.813
${\rm 2p^4}$ ${\rm ^3P}$ 0 3 -108.300 -108.406 ${\rm 2s^22p5d}$ ${\rm ^1D^o}$ 2 72 -16.494 -16.854
${\rm 2p^4}$ ${\rm ^1D}$ 2 4 -107.550 -107.626 ${\rm 2s^22p5d}$ ${\rm ^1F^o}$ 3 51 -16.457 -16.724
${\rm 2p^4}$ ${\rm ^1S}$ 0 4 -105.450 -105.511            


There are 39 observed energy levels of Fe XXI (Sugar & Corliss 1985). Present energies agree with the observed ones to less than or about 1% for all except two levels that agree within 2%. In Table 4 the column next to the J-column is for the energy level index, IJ. The energy level index specifies the position, in ascending order, of the level in the calculated set of energies of $J\pi $ symmetry. It is necessary to use the level indices to make correspondence between the calculated and observed levels for later use.

4.2 Oscillators strengths

The total number of oscillator strengths (f-values) for bound-bound fine structure transitions is 198259 for Ar XIII and is 300079 for Fe XXI. These include both the dipole allowed ( $\Delta S=0$) and the intercombination ( $\Delta S \neq$ 0) transitions. Complete sets of f-values for both Ar XIII and Fe XXI are available electronically.

Partial sets of the oscillator strengths for Ar XIII and Fe XXI are presented in Tables 5 and 6 respectively.

 
Table 5: Oscillator strengths and transition probabilities for Ar XIII (see text for explanation)
   18    6
    0    0         2    1
56 136 $E_i({\rm Ry})$ $E_j({\rm Ry})$ $gf_{\rm L}$ S $A_{ji}({\rm s}^{-1})$
1 1 -5.04159E+01 -4.65272E+01 -7.432E-02 5.734E-02 3.009E+09
1 2 -5.04159E+01 -4.58436E+01 -3.719E-02 2.440E-02 2.082E+09
1 3 -5.04159E+01 -4.45972E+01 -7.896E-02 4.071E-02 7.158E+09
1 4 -5.04159E+01 -4.39490E+01 -8.538E-03 3.961E-03 9.561E+08
1 5 -5.04159E+01 -2.20006E+01 -5.614E-02 5.927E-03 1.214E+11
1 6 -5.04159E+01 -2.17248E+01 -3.410E-04 3.566E-05 7.517E+08
1 7 -5.04159E+01 -1.92584E+01 -8.122E-01 7.820E-02 2.111E+12
1 8 -5.04159E+01 -1.91117E+01 -3.833E-01 3.673E-02 1.006E+12
1 9 -5.04159E+01 -1.87724E+01 -8.515E-03 8.073E-04 2.283E+10
1 10 -5.04159E+01 -1.86813E+01 -2.095E-02 1.980E-03 5.649E+10
1 11 -5.04159E+01 -1.86458E+01 -5.138E-03 4.852E-03 1.389E+10
1 12 -5.04159E+01 -1.84751E+01 -1.566E-04 1.471E-05 4.278E+08
1 13 -5.04159E+01 -1.82444E+01 -2.107E-01 1.965E-02 5.839E+11
1 14 -5.04159E+01 -1.79813E+01 -9.334E-02 8.633E-03 2.629E+11
1 15 -5.04159E+01 -1.66700E+01 -1.963E-02 1.745E-03 5.986E+10
1 16 -5.04159E+01 -1.66046E+01 -2.252E-04 1.998E-05 6.894E+08
1 17 -5.04159E+01 -1.64673E+01 -2.083E-03 1.841E-04 6.427E+09
1 18 -5.04159E+01 -1.57979E+01 -7.669E-03 6.646E-04 2.461E+10
1 19 -5.04159E+01 -1.57593E+01 -4.275E-02 3.701E-03 1.375E+11
1 20 -5.04159E+01 -1.55895E+01 -1.030E-02 8.873E-04 3.346E+10
1 21 -5.04159E+01 -1.54751E+01 -1.992E-02 1.710E-03 6.512E+10
1 22 -5.04159E+01 -1.54647E+01 -8.200E-03 7.038E-04 2.682E+10
1 23 -5.04159E+01 -1.48961E+01 -2.989E-04 2.525E-05 1.010E+09
1 24 -5.04159E+01 -1.46203E+01 -5.201E-03 4.359E-04 1.784E+10
1 25 -5.04159E+01 -1.42630E+01 -1.841E-03 1.528E-04 6.443E+09
1 26 -5.04159E+01 -1.33759E+01 -4.990E-04 4.042E-05 1.833E+09
1 27 -5.04159E+01 -1.31269E+01 -3.161E-05 2.543E-06 1.177E+08
1 28 -5.04159E+01 -1.30556E+01 -1.439E-06 1.156E-07 5.377E+06
1 29 -5.04159E+01 -1.26698E+01 -4.509E-03 3.584E-04 1.720E+10
1 30 -5.04159E+01 -1.25883E+01 -2.180E-03 1.729E-04 8.353E+09
1 31 -5.04159E+01 -1.23791E+01 -1.555E-03 1.226E-04 6.024E+09
1 32 -5.04159E+01 -1.19016E+01 -4.197E-03 3.269E-04 1.667E+10
1 33 -5.04159E+01 -1.18386E+01 -1.906E-03 1.482E-04 7.595E+09
1 34 -5.04159E+01 -1.17009E+01 -4.479E-03 3.471E-04 1.797E+10
1 35 -5.04159E+01 -1.15532E+01 -6.841E-04 5.281E-05 2.766E+09
1 36 -5.04159E+01 -1.14449E+01 -2.326E-03 1.791E-04 9.457E+09
1 37 -5.04159E+01 -1.13763E+01 -3.650E-03 2.805E-04 1.489E+10
1 38 -5.04159E+01 -1.13214E+01 -5.940E-03 4.558E-04 2.431E+10
1 39 -5.04159E+01 -1.12634E+01 -4.570E-02 3.502E-03 1.876E+11
1 40 -5.04159E+01 -1.11175E+01 -2.745E-02 2.096E-03 1.135E+11
1 41 -5.04159E+01 -1.10946E+01 -4.751E-03 3.625E-04 1.967E+10
1 42 -5.04159E+01 -1.09356E+01 -1.423E-02 1.081E-03 5.940E+10
1 43 -5.04159E+01 -1.07848E+01 -8.384E-02 6.347E-03 3.526E+11
1 44 -5.04159E+01 -1.06338E+01 -1.724E-01 1.300E-02 7.306E+11
1 45 -5.04159E+01 -1.05204E+01 -7.928E-03 5.962E-04 3.379E+10
1 46 -5.04159E+01 -1.03856E+01 -7.162E-05 5.367E-06 3.073E+08
1 47 -5.04159E+01 -9.45149E+00 -1.226E-03 8.979E-05 5.508E+09
1 48 -5.04159E+01 -9.40487E+00 -5.841E-05 4.273E-06 2.630E+08
1 49 -5.04159E+01 -9.36936E+00 -1.525E-06 1.115E-07 6.878E+06
1 50 -5.04159E+01 -8.69880E+00 -7.136E-06 5.132E-07 3.325E+07



 
Table 6: Oscillator strengths and transition probabilities for Fe XXI (see text for explanation)
   26    6
    0    0         2    1
64 157 $E_i({\rm Ry})$ $E_j({\rm Ry})$ $gf_{\rm L}$ S $A_{ji}({\rm s}^{-1})$
1 1 -1.24292E+02 -1.17168E+02 -8.556E-02 3.603E-02 1.163E+10
1 2 -1.24292E+02 -1.15815E+02 -2.267E-02 8.023E-03 4.362E+09
1 3 -1.24292E+02 -1.14241E+02 -3.606E-02 1.076E-02 9.752E+09
1 4 -1.24292E+02 -1.12695E+02 -1.038E-04 2.685E-05 3.738E+07
1 5 -1.24292E+02 -5.45579E+01 -5.459E-02 2.348E-03 7.108E+11
1 6 -1.24292E+02 -5.36838E+01 -2.443E-06 1.038E-07 3.261E+07
1 7 -1.24292E+02 -4.98528E+01 -1.097E+00 4.421E-02 1.628E+13
1 8 -1.24292E+02 -4.92676E+01 -2.376E-01 9.501E-03 3.581E+12
1 9 -1.24292E+02 -4.89841E+01 -6.728E-02 2.680E-03 1.022E+12
1 10 -1.24292E+02 -4.87720E+01 -2.967E-02 1.179E-03 4.530E+11
1 11 -1.24292E+02 -4.84796E+01 -2.779E-02 1.100E-03 4.277E+11
1 12 -1.24292E+02 -4.79949E+01 -4.288E-02 1.686E-03 6.684E+11
1 13 -1.24292E+02 -4.78167E+01 -1.718E-01 6.739E-03 2.690E+12
1 14 -1.24292E+02 -4.69872E+01 -2.536E-02 9.842E-04 4.058E+11
1 15 -1.24292E+02 -4.57908E+01 -3.615E-02 1.382E-03 5.965E+11
1 16 -1.24292E+02 -4.51108E+01 -4.164E-03 1.578E-04 6.990E+10
1 17 -1.24292E+02 -4.48241E+01 -1.864E-03 7.037E-05 3.151E+10
1 18 -1.24292E+02 -4.43456E+01 -1.420E-03 5.329E-05 2.431E+10
1 19 -1.24292E+02 -4.40629E+01 -1.372E-02 5.130E-04 2.364E+11
1 20 -1.24292E+02 -4.38519E+01 -1.681E-02 6.269E-04 2.912E+11
1 21 -1.24292E+02 -4.33769E+01 -4.298E-02 1.594E-03 7.534E+11
1 22 -1.24292E+02 -4.26163E+01 -1.653E-03 6.072E-05 2.953E+10
1 23 -1.24292E+02 -4.22948E+01 -7.745E-03 2.834E-04 1.394E+11
1 24 -1.24292E+02 -4.18241E+01 -1.151E-02 4.187E-04 2.096E+11
1 25 -1.24292E+02 -4.13257E+01 -9.296E-04 3.361E-05 1.713E+10
1 26 -1.24292E+02 -3.98368E+01 -8.523E-04 3.028E-05 1.628E+10
1 27 -1.24292E+02 -3.91261E+01 -5.482E-07 1.931E-08 1.065E+07
1 28 -1.24292E+02 -3.89117E+01 -2.576E-06 9.051E-08 5.028E+07
1 29 -1.24292E+02 -3.81248E+01 -3.895E-03 1.356E-04 7.743E+10
1 30 -1.24292E+02 -3.72353E+01 -3.496E-03 1.205E-04 7.093E+10
1 31 -1.24292E+02 -3.68057E+01 -3.001E-05 1.029E-06 6.150E+08
1 32 -1.24292E+02 -3.66023E+01 -2.169E-03 7.420E-05 4.465E+10
1 33 -1.24292E+02 -3.62569E+01 -1.857E-03 6.328E-05 3.853E+10
1 34 -1.24292E+02 -3.56225E+01 -6.271E-04 2.122E-05 1.320E+10
1 35 -1.24292E+02 -3.52504E+01 -4.418E-04 1.489E-05 9.379E+09
1 36 -1.24292E+02 -3.41344E+01 -2.004E-04 6.668E-06 4.361E+09
1 37 -1.24292E+02 -2.96152E+01 -3.262E-03 1.034E-04 7.829E+10
1 38 -1.24292E+02 -2.86486E+01 -5.945E-03 1.865E-04 1.456E+11
1 39 -1.24292E+02 -2.78866E+01 -1.027E-01 3.196E-03 2.556E+12
1 40 -1.24292E+02 -2.69896E+01 -1.375E-01 4.239E-03 3.485E+12
1 41 -1.24292E+02 -2.67722E+01 -5.394E-03 1.659E-04 1.373E+11
1 42 -1.24292E+02 -2.51918E+01 -1.245E-03 3.769E-05 3.273E+10
1 43 -1.24292E+02 -2.48551E+01 -3.036E-02 9.160E-02 8.038E+11
1 44 -1.24292E+02 -2.47189E+01 -6.847E-04 2.063E-05 1.818E+10
1 45 -1.24292E+02 -2.44906E+01 -1.546E-02 4.647E-04 4.124E+11
1 46 -1.24292E+02 -2.40150E+01 -5.308E-02 1.588E-03 1.429E+12
1 47 -1.24292E+02 -2.33917E+01 -9.461E-06 2.813E-07 2.579E+08
1 48 -1.24292E+02 -2.29626E+01 -1.697E-06 5.024E-08 4.664E+07
1 49 -1.24292E+02 -2.29205E+01 -3.144E-05 9.304E-07 8.651E+08
1 50 -1.24292E+02 -2.20492E+01 -4.263E-03 1.251E-04 1.193E+11


The format of the tables is the same as that of the electronic files for the f-values. At the top of each table, the two numbers are the nuclear charge (Z = 18 for Ar XIII and = 26 for Fe XXI) and number of electrons in the ion, $N_{\rm elc}$ (= 6 for carbon like ions). Below this line are the sets of oscillator strengths belonging to a pair of symmetries, $J_i\pi_i~-~J_k\pi_k$, specified at the top. The symmetries are expressed in the form of 2Ji and $\pi_i$ ($\pi=0$ for even and =1 for odd parity), 2Jk and $\pi_k$. For example, Tables 5 and 6 present partial transitions among the levels of symmetries $J=0^{\rm e}$ and $J=1^{\circ}$ for Ar XIII and Fe XXI respectively. The line following the transition symmetries are the number of bound levels, NJi and NJk. This line is followed by $N_{Ji}\times N_{Jk}$ number of transitions. The first two columns are the energy level indices, Ii and Ik (as mentioned above), and the third and the fourth columns are their energies, Ei and Ek, in Rydberg unit. The fifth column is the $gf_{\rm L}$ for the allowed transitions ($\Delta J$ = 0, $\pm 1$). $f_{\rm L}$ is the oscillator strength in length form, and g = 2J+1 is the statistical weight factor of the initial or the lower level. A negative value for gf means that i is the lower level, while a positive one means that k is the lower level. Column six is the line strength (S). The last column in the table gives the transition probability, $A_{ki}({\rm s}^{-1})$. Complete spectroscopic identification of the transition can be obtained from Tables 2a and 3a by referring to the values of $J_i\pi_i$, Ii, $J_k\pi_k$, and Ik. For example, the first transition for Fe XXI in Table 6 corresponds to, as identified in Table 3a, dipole allowed transition $2{\rm s}^22{\rm p}^2(^3{\rm P^e}_0)(I_i=1)
\rightarrow 2{\rm s}2{\rm p}^3(^3 {\rm D^o}_1)(I_k=1)$.

A set of transition probabilities for both Ar XIII and Fe XXI has been reprocessed such that observed energy differences, rather than the calculated ones, are used to obtain the f- and A-values from BPRM line strengths (S). The S-values are energy independent quantities. As the observed energies have lower uncertainties than the calculated ones, use of them, instead of the calculated energies, with the S-values (Eqs. 7 and 8) improves the accuracy of the f- and A-values for the relevant transitions. (This is a commonly used procedure adopted first in the NIST compilation.) The astrophysical models also in general use the observed transition energies for the relevant f-, S and A-values. For any comparison or spectral diagnostics, therefore, values from these sets should be used.

The reprocessing of f- and A-values has been carried out for all the allowed transitions ( $\Delta J=0,\, \pm 1$) among the observed levels. The set consists of 333 transitions of Ar XII and 184 of Fe XXI (these sets are also available electronically). Sample sets of the reprocessed oscillator strengths are presented in Tables 7a and 8a for Ar XIII and Fe XXI.

 
Table 7: a. Sample set of reprocessed f- and A-values for Ar XIII using observed transition energies. The negative sign for the energies is omitted for convenience. Ii and Ij are the level indices

Ci
Cj $S_iL_i\pi_i$ $S_jL_j\pi_j$ gi(Ii) gj(Ij) $E_i({\rm Ry})$ $E_j({\rm Ry})$ f $A_{ji}({\rm s}^{-1})$

${\rm 2s^22p^2} $
${\rm -~2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (1) 3 (1) 50.3320 46.4760 7.370E-02 2.93E+09
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (2) 50.3320 45.8140 3.675E-02 2.01E+09
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3S^o}$ 1 (1) 3 (3) 50.3320 44.6040 7.773E-02 6.83E+09
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (4) 50.3320 43.9660 8.405E-03 9.12E+08
${\rm 2s^22p^2} $ ${\rm -~2s^22p3s} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (5) 50.3320 21.6590 5.665E-02 1.25E+11
${\rm 2s^22p^2} $ ${\rm -~2s^22p3s} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (6) 50.3320 21.3810 3.441E-04 7.72E+08
${\rm 2s^22p^2} $ ${\rm -~2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (1) 3 (7) 50.3320 19.2530 8.101E-01 2.10E+12
${\rm 2s^22p^2} $ ${\rm -~2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (8) 50.3320 19.0370 3.832E-01 1.00E+12
${\rm 2s^22p^2} $ ${\rm -~2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (9) 50.3320 18.7400 8.501E-03 2.27E+10
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (1) 3 (16) 50.3320 17.1260 2.212E-04 6.53E+08
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (18) 50.3320 15.7840 7.654E-03 2.45E+10
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (20) 50.3320 15.5810 1.028E-02 3.32E+10
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^3S^o}$ 1 (1) 3 (21) 50.3320 15.5630 1.982E-02 6.41E+10
${\rm 2s^22p^2} $ ${\rm -~2s^22p4s} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (30) 50.3320 11.5800 2.233E-03 8.98E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p4s} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (31) 50.3320 11.8260 1.574E-03 6.25E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (43) 50.3320 10.5650 8.413E-02 3.56E+11
${\rm 2s^22p^2} $ ${\rm -~2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (45) 50.3320 10.7740 7.861E-03 3.29E+10
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^3D^o}$ 1 (2) 3 (1) 48.8560 46.4760 2.257E-04 3.42E+06
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (2) 48.8560 45.8140 4.438E-04 1.10E+07
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^3S^o}$ 1 (2) 3 (3) 48.8560 44.6040 8.290E-03 4.01E+08
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (4) 48.8560 43.9660 1.314E-01 8.41E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p3s} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (5) 48.8560 21.6590 8.977E-04 1.78E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p3s} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (6) 48.8560 21.3810 7.492E-02 1.51E+11
${\rm 2s^22p^2} $ ${\rm -~2s^22p3d} $ ${\rm ^1S^e}$ ${\rm ^3D^o}$ 1 (2) 3 (7) 48.8560 19.2530 8.055E-03 1.89E+10
${\rm 2s^22p^2} $ ${\rm -~2s^22p3d} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (8) 48.8560 19.0370 1.741E-03 4.15E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p3d} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (9) 48.8560 18.7400 1.227E+00 2.98E+12
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^1S^e}$ ${\rm ^3D^o}$ 1 (2) 3 (16) 48.8560 17.1260 8.095E-03 2.18E+10
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (18) 48.8560 15.7840 4.672E-02 1.37E+11
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (20) 48.8560 15.5810 2.188E-01 6.49E+11
${\rm 2s^22p^2} $ ${\rm -~2s2p^23p} $ ${\rm ^1S^e}$ ${\rm ^3S^o}$ 1 (2) 3 (21) 48.8560 15.5630 6.007E-04 1.78E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p4s} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (30) 48.8560 11.5800 2.184E-03 8.13E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p4s} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (31) 48.8560 11.8260 3.867E-03 1.42E+10
${\rm 2s^22p^2} $ ${\rm -~2s^22p4d} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (43) 48.8560 10.5650 2.516E-02 9.88E+10
${\rm 2s^22p^2} $ ${\rm -~2s^22p4d} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (45) 48.8560 10.7740 2.355E-01 9.14E+11
${\rm 2S2p^3} $ ${\rm -~2p^4} $ ${\rm ^3D^o}$ ${\rm ^3P^e}$ 3 (1) 1 (3) 46.4760 41.2420 3.321E-02 2.19E+10
${\rm 2s2p^3} $ ${\rm -~2p^4} $ ${\rm ^3P^o}$ ${\rm ^3P^e}$ 3 (2) 1 (3) 45.8140 41.2420 2.436E-02 1.23E+10
${\rm 2s2p^3} $ ${\rm -~2p^4} $ ${\rm ^3S^o}$ ${\rm ^3P^e}$ 3 (3) 1 (3) 44.6040 41.2420 1.657E-02 4.51E+09
${\rm 2s2p^3} $ ${\rm -~2p^4} $ ${\rm ^1P^o}$ ${\rm ^3P^e}$ 3 (4) 1 (3) 43.9660 41.2420 1.568E-03 2.80E+08
${\rm 2p^4}$ ${\rm -~2s^22p3s} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (3) 3 (5) 41.2420 21.6590 2.841E-06 2.92E+06
${\rm 2p^4}$ ${\rm -~2s^22p3s} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (3) 3 (6) 41.2420 21.3810 9.904E-07 1.05E+06
${\rm 2p^4}$ ${\rm -~2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (3) 3 (7) 41.2420 19.2530 7.887E-06 1.02E+07
${\rm 2p^4}$ ${\rm -~2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (3) 3 (8) 41.2420 19.0370 2.720E-05 3.59E+07
${\rm 2p^4}$ ${\rm -~2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (3) 3 (9) 41.2420 18.7400 6.594E-06 8.94E+06
${\rm 2p^4}$ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (3) 3 (16) 41.2420 17.1260 9.606E-09 1.50E+04
${\rm 2p^4}$ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (3) 3 (18) 41.2420 15.7840 4.387E-04 7.61E+08
${\rm 2p^4}$ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (3) 3 (20) 41.2420 15.5810 5.815E-04 1.03E+09
${\rm 2p^4}$ ${\rm -~2s2p^23p} $ ${\rm ^3P^e}$ ${\rm ^3S^o}$ 1 (3) 3 (21) 41.2420 15.5630 1.354E-02 2.39E+10
${\rm 2p^4}$ ${\rm -~2s^22p4s} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (3) 3 (30) 41.2420 11.5800 3.678E-07 8.66E+05
${\rm 2p^4}$ ${\rm -~2s^22p4s} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (3) 3 (31) 41.2420 11.8260 1.251E-05 2.90E+07
${\rm 2p^4}$ ${\rm -~2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (3) 3 (43) 41.2420 10.5650 1.511E-02 3.81E+10
${\rm 2p^4}$ ${\rm -~2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (3) 3 (45) 41.2420 10.7740 4.366E-04 1.09E+09
${\rm 2s^22p^2} $ ${\rm -~2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 1 (1) 50.2430 45.8170 2.071E-02 9.78E+09
${\rm 2s2p^3} $ ${\rm -~2p^4} $ ${\rm ^3P^o}$ ${\rm ^3P^e}$ 1 (1) 3 (2) 45.8170 41.2860 4.223E-02 2.32E+09
${\rm 2s^22p^2} $ ${\rm -~2s^22p3s} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 1 (2) 50.2430 21.7220 1.874E-02 3.67E+11
${\rm 2p^4}$ ${\rm -~2s^22p3s} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (2) 1 (2) 41.2860 21.7220 7.065E-07 6.52E+06



 
Table 7: b. Fine structure transitions of Ar XIII are ordered in LS multiplets and are compared with previous values. Notation $a\pm b$ means $a\times 10^b$, "O'' means for others and "P'' for present. The last line of a set of dipole allowed transitions corresponds to the LS multiplet

Ci
Cj $S_iL_i\pi_i$ $S_jL_j\pi_j$ gi(Ii) gj(Ij) fij(O) fij(P) $A_{ji}({\rm s}^{-1},O)$ $A_{ji}({\rm s}^{-1},P)$

${\rm 2s22p2} $
$ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3D1}$ 1(1) 3(1) 8.267-21 7.370-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3D1}$ 3(1) 3(1) 1.163-21 1.078-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3D1}$ 3(1) 5(2) 5.865-21 5.352-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3D1}$ 5(1) 3(2) 1.487-41 9.623-6    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3D1}$ 5(1) 5(2) 3.399-31 2.623-3    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3D1}$ 5(1) 7(1) 5.037-21 4.507-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3D1}$ 9 15 5.33-22 5.209-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3P1}$ 1(1) 3(2) 5.750-21      
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3P1}$ 3(1) 1(1) 2.347-21 2.071-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3P1}$ 3(1) 3(2) 2.642-21 1.574-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3P1}$ 3(1) 5(3) 1.622-21 1.318-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3P1}$ 5(1) 3(2) 1.421-21 1.947-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3P1}$ 5(1) 5(3) 5.865-21 5.271-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3P1}$ 9 9 5.96-22 6.096-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3S1}$ 1(1) 3(3) 7.053-21 7.773-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3S1}$ 3(1) 3(3) 7.163-21 7.544-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3S1}$ 5(1) 3(3) 8.013-21 6.635-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^3S1}$ 9 3 7.0-22 7.060-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^1P1}$ 1(1) 3(4) 7.251-61 8.405-3    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^1P1}$ 3(1) 3(4) 1.690-31 3.256-3    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^1P1}$ 5(1) 3(4) 6.231-61 5.59E-6    
                   
${\rm 2s22p2} $ $ {\rm -2S2p3} $ ${\rm ^1S0}$ ${\rm ^3D1}$ 1(2) 3(1) 3.263-41 2.257-4    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1S0}$ ${\rm ^3P1}$ 1(2) 3(2) 7.137-41 4.438-4    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1S0}$ ${\rm ^3S1}$ 1(2) 3(3) 9.600-41 8.290-3    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1S0}$ ${\rm ^1P1}$ 1(2) 3(4) 1.514-11,1.35-12 1.314-1    
                   
${\rm 2s22p2} $ ${\rm -2s22p3s}$ ${\rm ^3P0}$ ${\rm ^3P1}$ 1(1) 3(5) 4.966-21 5.665-2    
${\rm 2s22p2} $ ${\rm -2s22p3s}$ ${\rm ^3P0}$ ${\rm ^3P1}$ 3(1) 1(2) 1.734-21 1.874-2    
${\rm 2s22p2} $ ${\rm -2s22p3s}$ ${\rm ^3P0}$ ${\rm ^3P1}$ 3(1) 3(5) 1.157-21 1.431-2    
${\rm 2s22p2} $ ${\rm -2s22p3s}$ ${\rm ^3P0}$ ${\rm ^3P1}$ 3(1) 5(5) 2.194-21 2.357-2    
${\rm 2s22p2} $ ${\rm -2s22p3s}$ ${\rm ^3P0}$ ${\rm ^3P1}$ 5(1) 3(5) 1.388-21 1.110-2    
${\rm 2s22p2} $ ${\rm -2s22p3s}$ ${\rm ^3P0}$ ${\rm ^3P1}$ 5(1) 5(5) 3.843-21 4.274-2    
${\rm 2s22p2} $ ${\rm -2s22p3s}$ ${\rm ^3P0}$ ${\rm ^3P1}$ 9 9 6.07-22 5.507-2    
                   
${\rm 2S2p3}$ $ {\rm -2p4} $ ${\rm ^3D1}$ ${\rm ^3P0}$ 3(1) 1(3) 3.817-21 3.321-2    
${\rm 2S2p3}$ $ {\rm -2p4} $ ${\rm ^3D1}$ ${\rm ^3P0}$ 3(1) 3(2) 3.765-21 3.720-2    
${\rm 2S2p3}$ $ {\rm -2p4} $ ${\rm ^3D1}$ ${\rm ^3P0}$ 3(1) 5(3) 4.857-31 3.430-3    
${\rm 2S2p3}$ $ {\rm -2p4} $ ${\rm ^3D1}$ ${\rm ^3P0}$ 15 9 6.867-22 1.452-2    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3(3) 1(3) 7.175-21 1.657-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3(3) 3(2) 6.660-21 5.504-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3(3) 5(3) 5.916-21 9.966-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3 9 1.58-12 1.716-1    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^1P1}$ ${\rm ^3P0}$ 3(4) 1(3) 8.069-51 1.568-3    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^1P1}$ ${\rm ^3P0}$ 3(4) 3(2) 1.103-31 1.809-3    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^1P1}$ ${\rm ^3P0}$ 3(4) 5(3) -3.784-41 4.007-4    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^5S1}$ 3(1) 5(1)   3.752-5 7.28+53 7.01+5
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^3P0}$ ${\rm ^5S1}$ 5(1) 5(1)   4.810-5 1.35+63 1.34+6
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1D0}$ ${\rm ^5S1}$ 5(2) 5(1)   4.730-7 7.15+33 6.26+3
1  Zhang & Sampson (1997), 2 Luo & Pradhan (1989), 3 Mendoza et al. (1999).    



 
Table 8: a. Sample set of reprocessed f- and A-values for Fe XXI using observed transition energies. The negative sign for the energies is omitted for convenience. Ii and Ij are the level indices

Ci
Cj $S_iL_i\pi_i$ $S_jL_j\pi_j$ gi(Ii) gj(Ij) $E_i({\rm Ry})$ $E_j({\rm Ry})$ f $A_{ji}({\rm s}^{-1})$

${\rm 2s^22p2} $
${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (1) 3 (1) 124.1100 117.0400 8.491E-02 1.14E+10
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (2) 124.1100 115.6900 2.252E-02 4.27E+09
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3S^o}$ 1 (1) 3 (3) 124.1100 114.1300 3.579E-02 9.55E+09
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (4) 124.1100 112.6200 1.028E-04 3.63E+07
${\rm 2s^22p^2} $ ${\rm - 2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (1) 3 (11) 124.1100 48.5350 2.771E-02 4.24E+11
${\rm 2s^22p^2} $ ${\rm - 2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (1) 3 (39) 124.1100 27.6930 1.027E-01 2.56E+12
${\rm 2s^22p^2} $ ${\rm - 2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (40) 124.1100 26.7180 1.376E-01 3.49E+12
${\rm 2s^22p^2} $ ${\rm - 2s^22p5d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (1) 3 (67) 124.1100 16.4940 5.546E-02 1.72E+12
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^3D^o}$ 1 (2) 3 (1) 120.7300 117.0400 1.066E-03 3.88E+07
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (2) 120.7300 115.6900 2.208E-03 1.50E+08
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^3S^o}$ 1 (2) 3 (3) 120.7300 114.1300 5.568E-03 6.49E+08
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (4) 120.7300 112.6200 9.789E-02 1.72E+10
${\rm 2s^22p^2} $ ${\rm - 2s^22p3d} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (2) 3 (11) 120.7300 48.5350 1.276E+00 1.78E+13
${\rm 2s^22p^2} $ ${\rm - 2s^22p4d} $ ${\rm ^1S^e}$ ${\rm ^3D^o}$ 1 (2) 3 (39) 120.7300 27.6930 2.722E-02 6.31E+11
${\rm 2s^22p^2} $ ${\rm - 2s^22p4d} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (40) 120.7300 26.7180 1.458E-03 3.45E+10
${\rm 2s^22p^2} $ ${\rm - 2s^22p5d} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (2) 3 (67) 120.7300 16.4940 1.678E-03 4.88E+10
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3D^o}$ ${\rm ^3P^e}$ 3 (1) 1 (3) 117.0400 108.3000 1.911E-02 3.52E+10
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3P^o}$ ${\rm ^3P^e}$ 3 (2) 1 (3) 115.6900 108.3000 1.379E-02 1.81E+10
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3S^o}$ ${\rm ^3P^e}$ 3 (3) 1 (3) 114.1300 108.3000 2.095E-02 1.72E+10
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^1P^o}$ ${\rm ^3P^e}$ 3 (4) 1 (3) 112.6200 108.3000 3.176E-05 1.43E+07
${\rm 2p^4}$ ${\rm - 2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 1 (3) 3 (11) 108.3000 48.5350 1.067E-06 1.02E+07
${\rm 2p^4}$ ${\rm -~2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 1 (3) 3 (39) 108.3000 27.6930 2.334E-05 4.06E+08
${\rm 2p^4}$ ${\rm -~2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (3) 3 (40) 108.3000 26.7180 1.608E-04 2.87E+09
${\rm 2p^4}$ ${\rm - 2s^22p5d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 1 (3) 3 (67) 108.3000 16.4940 5.095E-04 1.15E+10
${\rm 2s2p^3} $ ${\rm -~2p^4} $ ${\rm ^3D^o}$ ${\rm ^1S^e}$ 3 (1) 1 (4) 117.0400 105.4500 8.736E-05 2.83E+08
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3P^o}$ ${\rm ^1S^e}$ 3 (2) 1 (4) 115.6900 105.4500 1.739E-03 4.39E+09
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3S^o}$ ${\rm ^1S^e}$ 3 (3) 1 (4) 114.1300 105.4500 2.770E-03 5.03E+09
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^1P^o}$ ${\rm ^1S^e}$ 3 (4) 1 (4) 112.6200 105.4500 6.055E-02 7.50E+10
${\rm 2p^4}$ ${\rm - 2s^22p3d} $ ${\rm ^1S^e}$ ${\rm ^1P^o}$ 1 (4) 3 (11) 105.4500 48.5350 8.194E-05 7.11E+08
${\rm 2p^4}$ ${\rm - 2s^22p4d} $ ${\rm ^1S^e}$ ${\rm ^3D^o}$ 1 (4) 3 (39) 105.4500 27.6930 7.892E-06 1.28E+08
${\rm 2p^4}$ ${\rm -~2s^22p4d} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (4) 3 (40) 105.4500 26.7180 1.302E-05 2.16E+08
${\rm 2p^4}$ ${\rm - 2s^22p5d} $ ${\rm ^1S^e}$ ${\rm ^3P^o}$ 1 (4) 3 (67) 105.4500 16.4940 3.718E-08 7.88E+05
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 1 (1) 123.4400 115.7600 1.537E-02 2.18E+10
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3P^o}$ ${\rm ^3P^e}$ 1 (1) 3 (2) 115.7600 108.2500 3.117E-02 4.71E+09
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 3 (1) 3 (1) 123.4400 117.0400 2.453E-03 8.07E+08
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 3 (2) 123.4400 115.6900 3.234E-02 1.56E+10
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^3S^o}$ 3 (1) 3 (3) 123.4400 114.1300 3.671E-02 2.56E+10
${\rm 2s^22p^2} $ ${\rm -2s2p^3} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 3 (1) 3 (4) 123.4400 112.6200 5.291E-03 4.98E+09
${\rm 2s^22p^2} $ ${\rm - 2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 3 (1) 3 (11) 123.4400 48.5350 6.550E-03 2.95E+11
${\rm 2s^22p^2} $ ${\rm - 2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 3 (1) 3 (39) 123.4400 27.6930 4.825E-02 3.55E+12
${\rm 2s^22p^2} $ ${\rm - 2s^22p4d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 3 (40) 123.4400 26.7180 2.762E-03 2.08E+11
${\rm 2s^22p^2} $ ${\rm - 2s^22p5d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 3 (67) 123.4400 16.4940 4.713E-04 4.33E+10
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3D^o}$ ${\rm ^3P^e}$ 3 (1) 3 (2) 117.0400 108.2500 2.322E-02 1.44E+10
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3P^o}$ ${\rm ^3P^e}$ 3 (2) 3 (2) 115.6900 108.2500 1.921E-04 8.54E+07
${\rm 2s2p^3} $ ${\rm - 2p^4} $ ${\rm ^3S^o}$ ${\rm ^3P^e}$ 3 (3) 3 (2) 114.1300 108.2500 4.638E-02 1.29E+10
${\rm 2s2p^3} $ ${\rm -~2p^4} $ ${\rm ^1P^o}$ ${\rm ^3P^e}$ 3 (4) 3 (2) 112.6200 108.2500 4.176E-03 6.41E+08
${\rm 2p^4}$ ${\rm - 2s^22p3d} $ ${\rm ^3P^e}$ ${\rm ^1P^o}$ 3 (2) 3 (11) 108.2500 48.5350 5.993E-06 1.72E+08
${\rm 2p^4}$ ${\rm -2s^2.2p.4d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 3 (2) 3 (39) 108.2500 27.6930 5.489E-06 2.86E+08
${\rm 2p^4}$ ${\rm -2s^2.2p.4d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (2) 3 (40) 108.2500 26.7180 2.160E-06 1.15E+08
${\rm 2p^4}$ ${\rm -2s^2.2p.5d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (2) 3 (67) 108.2500 16.4940 1.847E-04 1.25E+10
${\rm 2s^2.2p2} $ ${\rm -2s^.2p3} $ ${\rm ^3P^e}$ ${\rm ^5S^o}$ 3 (1) 5 (1) 123.4400 119.6800 5.155E-04 3.51E+07
${\rm 2s^2.2p2} $ ${\rm -2s^.2p3} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 3 (1) 5 (2) 123.4400 117.0300 4.621E-02 9.15E+09
${\rm 2s^2.2p2} $ ${\rm -2s^.2p3} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 5 (3) 123.4400 115.5300 1.379E-03 4.16E+08
${\rm 2s^2.2p2} $ ${\rm -2s^.2p3} $ ${\rm ^3P^e}$ ${\rm ^1D^o}$ 3 (1) 5 (4) 123.4400 113.8500 9.379E-04 4.16E+08
${\rm 2s^2.2p2} $ ${\rm -2s^2.2p.3d} $ ${\rm ^3P^e}$ ${\rm ^1D^o}$ 3 (1) 5 (6) 123.4400 50.3200 4.192E-05 1.08E+09
${\rm 2s^2.2p2} $ ${\rm -2s^2.2p.3d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 3 (1) 5 (8) 123.4400 49.5060 8.502E-01 2.24E+13
${\rm 2s^2.2p2} $ ${\rm -2s^2.2p.3d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 5 (9) 123.4400 49.1090 6.579E-03 1.75E+11
${\rm 2s^2.2p2} $ ${\rm -2s^2.2p.4d} $ ${\rm ^3P^e}$ ${\rm ^3P^o}$ 3 (1) 5 (39) 123.4400 27.7030 1.682E-02 7.43E+11
${\rm 2s^2.2p2} $ ${\rm -2s^2.2p.4d} $ ${\rm ^3P^e}$ ${\rm ^1D^o}$ 3 (1) 5 (40) 123.4400 26.8370 6.750E-02 3.04E+12
${\rm 2s^2.2p2} $ ${\rm -2s^2.2p.4d} $ ${\rm ^3P^e}$ ${\rm ^3D^o}$ 3 (1) 5 (41) 123.4400 27.0190 7.369E-02 3.30E+12
${\rm 2s^2.2p2} $ ${\rm -2s^2.2p.5d} $ ${\rm ^3P^e}$ ${\rm ^1D^o}$ 3 (1) 5 (72) 123.4400 16.4940 1.839E-02 1.01E+12
${\rm 2s^.2p3} $ ${\rm - 2p^4} $ ${\rm ^5S^o}$ ${\rm ^3P^e}$ 5 (1) 3 (2) 119.6800 108.2500 1.586E-04 2.77E+08
${\rm 2s^.2p3} $ ${\rm - 2p^4} $ ${\rm ^3D^o}$ ${\rm ^3P^e}$ 5 (2) 3 (2) 117.0300 108.2500 2.093E-02 2.16E+10
${\rm 2s^.2p3} $ ${\rm -~2p^4} $ ${\rm ^3P^o}$ ${\rm ^3P^e}$ 5 (3) 3 (2) 115.5300 108.2500 2.219E-02 1.57E+10



 
Table 8: b. Fine structure transitions of Ar XIII are ordered in LS multiplets and are compared with previous values. Notation $a\pm b$ means $a\times 10^b$, "O'' means for others and "P'' for present. The last line of a set of dipole allowed transitions corresponds to the LS multiplet

Ci
Cj $S_iL_i\pi_i$ $S_jL_j\pi_j$ gi(Ii) gj(Ij) fij(O) fij(P) $A_{ji}({\rm s}^{-1},O)$ $A_{ji}({\rm s}^{-1},P)$

${\rm 2s22p2} $
$ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3D1}$ 1 (1) 3 (1) 9.3-21 8.49-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3D1}$ 3 (1) 3 (1) 2.4-31 2.45-3    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3D1}$ 3 (1) 5 (2) 5.1-21 4.62-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3D1}$ 5 (1) 3 (1) 1.5-41 5.02-3    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3D1}$ 5 (1) 5 (2) 4.4-51 7.64-6    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3D1}$ 5 (1) 7 (1) 2.95-21 2.70-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3D1}$ 9 15 4.5-21,3.71-22 4.20-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3P1}$ 1 (1) 3 (2) 2.25-21 2.25-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3P1}$ 3 (1) 1 (1) 1.70-21 1.54-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3P1}$ 3 (1) 3 (2) 3.54-21 3.23-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3P1}$ 3 (1) 5 (3) 1.2-31 1.38-3    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3P1}$ 5 (1) 3 (2) 4.4-31 1.13-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3P1}$ 5 (1) 5 (3) 4.79-21 4.46-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3P1}$ 9 9 4.98-21,4.09-22 5.03-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3S1}$ 1 (1) 3 (3) 3.70-21 3.58-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3S1}$ 3 (1) 3 (3) 3.79-21 3.67-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3S1}$ 5 (1) 3 (3) 6.0-21 4.01-2    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^3S1}$ 9 3 5.1-21,4.68-22 3.86-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^1D1}$ 3 (1) 5(4) 9.5-41 9.38-4    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^1D1}$ 5 (1) 5(4) 1.3-21 1.20-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^1P1}$ 1 (1) 3 (4)   1.03-4    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^1P1}$ 3 (1) 3 (4) 5.6-31 5.29-3    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^1P1}$ 5 (1) 3 (4) 1.6-41 8.45-4    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1D0}$ ${\rm ^3D1}$ 5 (2) 3 (1) 6.4-41 2.96-5    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1D0}$ ${\rm ^3D1}$ 5 (2) 5 (2) 2.0-41 2.27-4    
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1D0}$ ${\rm ^3D1}$ 5 (2) 7 (1) 7.0-31 6.59-3    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1D0}$ ${\rm ^1P1}$ 5(2) 3(4) 6.2-21,5.36-22 5.30-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1D0}$ ${\rm ^1D1}$ 5 5 9.2-21,9.14-22 8.56-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1S0}$ ${\rm ^1P1}$ 1 (2) 3 (4) 1.04-12 9.79-2    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1S0}$ ${\rm ^3D1}$ 1 (2) 3 (1) 1.5-31 1.07-3    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1S0}$ ${\rm ^3P1}$ 1 (2) 3 (2) 2.4-31 2.21-3    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1S0}$ ${\rm ^3S1}$ 1 (2) 3 (3) 5.9-31 5.57-3    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^1D0}$ 3 (2) 5(4) 4.1-31 7.81-5    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^1D0}$ 5 (3) 5(4) 4.9-31 4.79-3    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3D1}$ ${\rm ^1D0}$ 5 (2) 5 (4) 1.0-31 1.08-3    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3D1}$ ${\rm ^1D0}$ 7 (1) 5 (4) 6.2-31 5.96-3    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3(3) 1(3) 2.35-21 2.10-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3(3) 3(2) 5.2-21 4.64-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3(3) 5(3) 5.6-21 6.60-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3S1}$ ${\rm ^3P0}$ 3 9 0.131,0.1122 0.133    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^3P0}$ 3(2) 1(3) 1.55-21 1.38-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^3P0}$ 1(1) 3(2) 3.41-21 3.12-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^3P0}$ 3(2) 3(2) 3.4-41 1.92-4    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^3P0}$ 5(3) 3(2) 2.50-21 2.22-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^3P0}$ 3(2) 5(3) 1.84-21 2.68-3    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^3P0}$ 5(3) 5(3) 1.11-21 1.12-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^3P1}$ ${\rm ^3P0}$ 9 9 3.6-21,2.62-22 2.70-2    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm 3D1}$ ${\rm ^3P0}$ 3 (1) 1(3) 2.03-21 1.91-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm 3D1}$ ${\rm ^3P0}$ 3 (1) 3 (2) 2.52-21 2.32-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm 3D1}$ ${\rm ^3P0}$ 5 (2) 3 (2) 2.20-21 2.09-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm 3D1}$ ${\rm ^3P0}$ 3 (1) 5 (3) 1.25-21 8.03-4    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm 3D1}$ ${\rm ^3P0}$ 5 (2) 5 (3) 2.92-21 2.62-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm 3D1}$ ${\rm ^3P0}$ 7 (1) 5 (3) 4.67-21 4.23-2    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm 3D1}$ ${\rm ^3P0}$ 15 9 5.1-21,4.69-22 4.43-2    
                   
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^1P1}$ ${\rm ^3P0}$ 3(4) 1(3)   3.18-5    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^1P1}$ ${\rm ^3P0}$ 3(4) 3(2) 4.8-31 4.18-3    
${\rm 2s2p3} $ $ {\rm -2p4} $ ${\rm ^1P1}$ ${\rm ^3P0}$ 3(4) 5(3) 1.9-31 2.31-3    
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^5S1}$ 3 (1) 5 (1) 5.3-41 5.155-4 3.61+73 3.51+7
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm 3P0}$ ${\rm ^5S1}$ 5 (1) 5 (1) 3.8-41 3.72-4 3.27+73 3.39+7
                   
${\rm 2s22p2} $ $ {\rm -2s2p3} $ ${\rm ^1D0}$ ${\rm ^5S1}$ 5 2   3.53-5 1.46+63 1.38+6
1  Cheng et al. (1979), 2 Luo & Pradhan (1989), 3 Mendoza et al. (1999).    


Transitions are listed in $J\pi $ order, and in contrast to the large complete files (Tables 5 and 6) they are given with complete identification. The level index, Ii, for each energy level in the tables is given next to the J-value for an easy access to the complete f-file. For example, the transition $J=0^{\rm e}(I_i=1)\rightarrow J=1^{\circ}(I_j=1)$ in Table 7a corresponds to the first transition in Table 5, and hence, the f- and A-values of Table 7a should replace those in Table 5. The overall replacement in Tables 5 or 6 (as may be needed in a model calculation requring large number of transitions) can be carried out by sorting out the reprocessed transitions through their energy level indices. The set of level indices of each symmetry $J\pi $ for both Ar XIII and Fe XXI that correspond to these transitions are given in Table 9.


 
Table 9: Level indices of the calculated fine structure energy levels for various $J\pi $ symmetries that have been observed and among which the allowed transitions have been reprocessed using the observed energies. nj is the number of observed levels in each symmetry
$J\pi $ nj level indices
Ar XIII
$0^{\rm e}$ 3 1,2,3
$0^{\rm o}$ 6 1,2,3,8,12,18
$1^{\rm e}$ 2 1,2
$1^{\rm o}$ 17 1,2,3,4,5,6,7,8,9,16,18,20,21,30,31,43,45
$2^{\rm e}$ 5 1,2,3,4,14
$2^{\rm o}$ 15 1,2,3,4,5,6,7,8,9,15,16,19,29,44,46
$3^{\rm e}$ 1 6
$3^{\rm o}$ 5 1,2,3,4,8
$4^{\rm o}$ 1 1
Fe XXI
$0^{\rm e}$ 4 1,2,3,4
$0^{\rm o}$ 1 1
$1^{\rm e}$ 2 1,2
$1^{\rm o}$ 8 1,2,3,4,11,39,40,67
$2^{\rm e}$ 4 1,2,3,4
$2^{\rm o}$ 11 1,2,3,4,6,8,9,39,40,41,72
$3^{\rm o}$ 9 1,2,3,4,22,23,24,50,51


The reprocessed transitions are further ordered in terms of their configurations and LS terms. This enables one to obtain the f-values for the LS multiplets and check the completeness of the set of fine structure components belonging to the multiplet. However, the completeness depends also on the observed set of fine structure levels since the transitions correspond only to the observed levels. The LS multiplets are useful for various comparisons with other calculations and experiment where fine structure transitions can not be resolved. A partial set of these transitions is presented in Table 7b for Ar XIII and Table 8b for Fe XXI (the complete table is available electronically).

The oscillator strengths are compared with other calculations in Tables 7b for Ar XIII and 8b for Fe XXI. The oscillator strengths for a large number of fine structure transitions in Ar XIII and other carbon like ions have been obtained by Zhang & Sampson (1997) in the relativistic distorted wave calculations. They consider the transitions among the n = 2 and n = 3 levels. The other source of transition probabilities for Ar XIII is TOPbase (the database for the Opacity Project data) where transition probabilties for LS multiplets are given for states with $n \leq 10$. These values were calculated by Luo & Pradhan (1989) in the close coupling approximation using non-relativistic R-matrix method. Comparison of the present BPRM oscillator strengths with the previous calculations in Table 7b shows that present LS multiplets obtained from the fine structure components agree quite well with those of Luo and Pradhan except for the transition, ${\rm 2s2p^3(^3D^o)~-~2p^4(^3P)}$. However, comparison with Zhang and Sampson shows various degrees of agreement. There is good agreement for some fine structure components compared to others in the same LS multiplet, e.g. for ${\rm 2s^22p^2(^3P)~-~2s2p^3(^3D^o)}$. The largest difference is found in the weak transitions.

The f-values of Fe XXI have been compiled by Fuhr et al. (1988) and Shirai et al. (1990) (both references present the same values). They report mainly the multiconfiguration Dirac-Fock calculations by Cheng et al. (1979). The other source of large amount of data in LS coupling is from TOPbase (Cunto et al. 1993) calculated by Luo & Pradhan (1989) under the Opacity Project. Similar to the above case of Ar XIII, the Fe XXI oscillator strengths compare well for some but poorly for other fine structure components within a multiplet of previous calculations (Table 8b). For example, most of the fine structure components of the dipole allowed multiplets, ${\rm 2s^22p^2(^3P)~-~2s2p^3(^3D^o,^3P^o,^3S^o)}$, have comparable values from the two calculations, BPRM and Dirac-Fock, except for the weak transitions. While BPRM f-values agree well with those by Cheng et al. for the intercombination transitions, 5-5 and 5-7 of ${\rm 2s^22p^2(^1D)~-~2s2p^3(^3D^o)}$, they differ considerably for the transition 5-3. The LS multiplets are compared with those of Luo & Pradhan (1989) and in general agree very well with the present BPRM A-values.

Recently Mendoza et al. (1999) have calculated the transition probabilties for the intercombination transitions ${\rm 2s2p^3(^5S^o_2)~-~2s^22p^2(^3P_{1,2},^1D_2)}$ for the carbon isoelectronic sequence ions. Through extensive relativistic atomic structure calculations they study the effects of Breit interaction in the transition probabilties for these weak transitions. They estimate an accuracy better than 10% for A-values belonging to the ground levels $^3{\rm P_{1,2}}$ and 20% for the $^1{\rm D_2}$. Their values for Ar XIII agree very well with the present BPRM A-values (Table 7b), especially those to the ground levels; it is 4% for the 5So2 - 3P1and 0.01% for the ${\rm ^5S^o_2~-~^3P_2}$ transitions. The agreement is 14% for the ${\rm ^5S^o_2~-~^1D_2}$ for which they assign a larger uncertainty. For Fe XXI, present f-values for transitions to the ground configuration levels ${\rm 2s2p^3(^5S^o)~-~2s^22p^2(^3P_{1,2}, ^1D_2})$ agree very well with those by Cheng et al. The agreement is also quite good with the A-values obtained in elaborate calculations by Mendoza et al. (1999); about 4% for both the transitions to the ground term, ${\rm ^5S^o_2~-~^3P_{1,2}}$, and 5% for the ${\rm ^5S^o_2~-~^1D_2}$ transition.

Comparison of the present transition probabilities for the intercombination transitions with those of Mendoza et al. (1999) provides a measure of uncertainty of the present BPRM results. They studied the effect of Breit spin-spin and spin-other orbit interactions which are not included in the present work. The good agreement with them for these very weak transtions indicate the uncertainty of the present results to a maximum of 14% for most of the transitions. The discrepancy between the oscillator strengths in length and velocity forms ($f_{\rm L}$ and $f_{\rm V}$) is an indicator of accuracy consistent with the method of calculations. In the present results, it is found that the dispersion of the $f_{\rm L}$ and $f_{\rm V}$ values for Fe XXI is mainly in the very weak transitons. However, the dispersion is larger for Ar XIII; it is expected that the dispersion is caused mainly by the values of $f_{\rm V}$. Inclusion of more configurations in the Ar XIII wavefunction expansion could have improved the agreement; n = 3 configurations are still important and should be included in the target as spectroscopic configurations. However, that is computationally intractable in the BPRM calculations. It may be noted that the length form in a close coupling approximation is more accurate than the velocity form as it depends more on the asymptotic form of the wavefunction which is better represented in the R-matrix calculations.


next previous
Up: Atomic data from the

Copyright The European Southern Observatory (ESO)