The R-matrix calculations begin with the target wavefunction obtained
through configuration interaction atomic structure calculation.
Present target wavefunctions are obtained from the atomic structure
calculations using SUPERSTRUCTURE (Eissner et al. 1974).
The wavefunctions of Ar XIII and Fe XXI are represented by expansions
of 15 fine structure levels of the target or the core ion, Ar XIV and
Fe XXII, belonging to the 8 lowest LS terms:
,
,
and
.
The 15 fine structure levels alongwith their energies are listed in Table 1.
Term | ![]() |
![]() |
Term | ![]() |
![]() |
Term | ![]() |
![]() |
Term | ![]() |
![]() |
||||
Ar XIV | Fe XXI | ||||||||||||||
1 |
![]() |
1/2 | 0.0 | 9 |
![]() |
1/2 | 4.9685 | 1 |
![]() |
1/2 | 0.0 | 9 |
![]() |
1/2 | 8.91420 |
2 |
![]() |
3/2 | 0.20647 | 10 |
![]() |
3/2 | 5.0544 | 2 |
![]() |
3/2 | 1.07776 | 10 |
![]() |
3/2 | 9.04241 |
3 |
![]() |
1/2 | 1.7925 | 11 |
![]() |
3/2 | 6.2455 | 3 |
![]() |
1/2 | 3.68653 | 11 |
![]() |
3/2 | 11.44278 |
4 |
![]() |
3/2 | 1.8709 | 12 |
![]() |
3/2 | 7.1115 | 4 |
![]() |
3/2 | 4.19365 | 12 |
![]() |
3/2 | 12.72512 |
5 |
![]() |
5/2 | 1.9756 | 13 |
![]() |
5/2 | 7.1361 | 5 |
![]() |
5/2 | 4.67717 | 13 |
![]() |
5/2 | 13.00269 |
6 |
![]() |
3/2 | 3.7387 | 14 |
![]() |
1/2 | 8.0301 | 6 |
![]() |
3/2 | 6.71166 | 14 |
![]() |
1/2 | 14.30352 |
7 |
![]() |
5/2 | 3.7471 | 15 |
![]() |
3/2 | 8.0711 | 7 |
![]() |
5/2 | 6.92217 | 15 |
![]() |
3/2 | 14.83288 |
8 |
![]() |
1/2 | 4.6878 | 8 |
![]() |
1/2 | 7.77748 | ||||||||
Ar XIV: | |||||||||||||||
Spectroscopic:
![]() |
|||||||||||||||
Correlation:
![]() ![]() |
|||||||||||||||
![]() |
|||||||||||||||
Fe XXI: | |||||||||||||||
Spectroscopic:
![]() |
|||||||||||||||
Correlation:
![]() ![]() |
|||||||||||||||
![]() |
The one- and two-electron radial integrals are computed by STG1 of the
BPRM codes using the one-electron target orbitals generated by
SUPERSTRUCTURE. The number of continuum R-matrix basis functions
is 12 for each ion. The calculations consider all possible bound levels
for
with
,
9, and
(2S+1)=1, 3, 5, even and odd parities. The intermediate coupling
calculations are carried out on recoupling the LS symmetries in a
pair-coupling representation in stage RECUPD. The (e + core) Hamiltonian
matrix is diagonalized for each resulting
in STGH.
STGB of the BPRM codes calculates the fine structure energy levels and
their wavefunctions. As fine structure causes large number
of closely spaced energy levels, STGB requires to use an energy mesh of
effective quantum number,
,
an order of magnitude
finer than needed in the LS coulping case to avoid levels missing.
This increases the computation time considerably.
The oscillator strengths (f-values) are computed using STGBB of the BPRM codes. STGBB computes the transition matrix elements using the bound wavefuncitons created by STGB and angular algebra for the dipole moment calculated by STGH. The STGBB computations are also considerably CPU time extensive due to large number of dipole allowed and intercombination transitions among the fine structure levels.
The BPRM method, which uses the collision theory, describes the energy
levels with channel identification for a given total .
The
information is not adequate for spectroscopic identification of the levels.
A level identification procedure as described in Nahar & Pradhan
(2000) is implemented to identify the levels of Ar XIII and Fe XXI.
The identification scheme is based on the analysis of quantum defects
and percentage weights of the channel wavefunctions similar to that
under the Opacity Project
(Seaton 1987). Each level is associated with a numer of collision
channels. The analysis is carried out over the contributing channels
with maximum channel percentage weight, i.e., the dominant channels
that determine the proper configurations and terms of the core
and the outer electrons. The levels are finally designated with possible
identification of
where
,
,
are the configuration, LS term and parity,
and total angular momentum of the core or target, nl are the principle
and orbital quantum numbers of the outer or the valence electron,
J and
are the total angular momentum, possible LS term and
parity of the (N+1)-electron system.
The principle quantum number, n, of the outer electron of a level
is determined from its effective quantum number, .
For each partial
wave (l),
of the lowest member (level with the lowest principle
quantum number of the valence electron) is determined from quantum defect
analysis of all the computed levels with same l. The lowest partial wave
(e.g. s) has the highest quantum defect (
). A check is maintained
to differentiate the quantum defect of a "s'' electron from that of
an equivalent electron state which has typically a large
in a
close coupling calculation. Once the lowest
is determined, the
levels of the corresponding Rydberg series is identified through
which is approximately equal to 1 for the
consecutive members. Such pattern for a series can be seen in the
complete table for level energies (available electronically). For
example,
for a 3s
electron is about 2.77 and for a 4s electron is about 3.66 for
Ar XIII (Table 2a,
= 0
), and it is 2.85 for a 3s electron
and 3.85 for a 4s electron for Fe XXI (Table 3a,
= 0
).
i | ![]() |
![]() |
![]() |
nl | J |
![]() |
![]() |
![]() |
NJ = 56, ![]() ![]() |
||||||||
1 |
![]() |
0 | -5.04159E+01 |
![]() |
||||
2 |
![]() |
0 | -4.89054E+01 |
![]() |
||||
3 | ![]() |
0 | -4.14331E+01 |
![]() |
||||
4 | ![]() |
0 | -3.96913E+01 |
![]() |
||||
5 |
![]() |
![]() |
1/2 | ![]() |
0 | -2.05345E+01 | 2.87 |
![]() |
6 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.97019E+01 | 2.91 |
![]() |
7 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.93963E+01 | 2.82 |
![]() |
8 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.74680E+01 | 2.96 |
![]() |
9 |
![]() |
![]() |
5/2 | ![]() |
0 | -1.71405E+01 | 2.97 |
![]() |
10 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.70355E+01 | 2.79 |
![]() |
11 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.67478E+01 | 2.79 |
![]() |
12 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.53551E+01 | 2.97 |
![]() |
13 |
![]() |
![]() |
5/2 | ![]() |
0 | -1.49520E+01 | 3.01 |
![]() |
14 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.41433E+01 | 2.97 |
![]() |
15 | ![]() |
![]() |
3/2 | ![]() |
0 | -1.36805E+01 | 2.91 |
![]() |
16 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.31449E+01 | 3.59 |
![]() |
NJ = 53, ![]() ![]() |
||||||||
1 |
![]() |
0 | -4.58522E+01 |
![]() |
||||
2 |
![]() |
![]() |
1/2 | ![]() |
0 | -2.20575E+01 | 2.77 |
![]() |
3 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.90794E+01 | 2.96 |
![]() |
4 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.86737E+01 | 2.87 |
![]() |
5 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.80112E+01 | 2.91 |
![]() |
6 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.64710E+01 | 2.89 |
![]() |
7 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.59211E+01 | 2.86 |
![]() |
8 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.57212E+01 | 2.85 |
![]() |
9 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.54559E+01 | 2.88 |
![]() |
10 | ![]() |
![]() |
1/2 | ![]() |
0 | -1.33819E+01 | 2.81 |
![]() |
11 | ![]() |
![]() |
3/2 | ![]() |
0 | -1.30580E+01 | 2.96 |
![]() |
12 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.26019E+01 | 3.66 |
![]() |
13 | ![]() |
![]() |
5/2 | ![]() |
0 | -1.21319E+01 | 2.96 |
![]() |
14 | ![]() |
![]() |
3/2 | ![]() |
0 | -1.17041E+01 | 3.00 |
![]() |
15 |
![]() |
![]() |
1/2 | ![]() |
0 | -1.14540E+01 | 3.57 |
![]() |
16 |
![]() |
![]() |
3/2 | ![]() |
0 | -1.11632E+01 | 3.60 |
![]() |
NJ = 131, ![]() ![]() |
||||||||
1 |
![]() |
1 | -5.03260E+01 |
![]() |
||||
2 | ![]() |
1 | -4.14770E+01 |
![]() |
||||
3 |
![]() |
![]() |
1/2 | ![]() |
1 | -2.08448E+01 | 2.85 |
![]() |
4 |
![]() |
![]() |
3/2 | ![]() |
1 | -2.07028E+01 | 2.84 |
![]() |
5 |
![]() |
![]() |
3/2 | ![]() |
1 | -2.05068E+01 | 2.86 |
![]() |
6 |
![]() |
![]() |
1/2 | ![]() |
1 | -2.04340E+01 | 2.88 |
![]() |
7 |
![]() |
![]() |
1/2 | ![]() |
1 | -1.99821E+01 | 2.79 |
![]() |
8 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.93348E+01 | 2.82 |
![]() |
9 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.81570E+01 | 2.78 |
![]() |
10 |
![]() |
![]() |
1/2 | ![]() |
1 | -1.76801E+01 | 2.95 |
![]() |
11 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.74609E+01 | 2.96 |
![]() |
12 |
![]() |
![]() |
5/2 | ![]() |
1 | -1.72186E+01 | 2.97 |
![]() |
13 |
![]() |
![]() |
5/2 | ![]() |
1 | -1.71594E+01 | 2.97 |
![]() |
14 |
![]() |
![]() |
5/2 | ![]() |
1 | -1.71434E+01 | 2.97 |
![]() |
15 |
![]() |
![]() |
1/2 | ![]() |
1 | -1.69176E+01 | 2.80 |
![]() |
16 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.67240E+01 | 2.79 |
![]() |
NJ = 136, ![]() ![]() |
||||||||
1 |
![]() |
1 | -4.65272E+01 |
![]() |
||||
2 |
![]() |
1 | -4.58436E+01 |
![]() |
||||
3 |
![]() |
1 | -4.45972E+01 |
![]() |
||||
4 |
![]() |
1 | -4.39490E+01 |
![]() |
||||
5 |
![]() |
![]() |
3/2 | ![]() |
1 | -2.20006E+01 | 2.76 |
![]() |
6 |
![]() |
![]() |
1/2 | ![]() |
1 | -2.17248E+01 | 2.79 |
![]() |
7 |
![]() |
![]() |
1/2 | ![]() |
1 | -1.92584E+01 | 2.96 |
![]() |
8 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.91117E+01 | 2.96 |
![]() |
9 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.87724E+01 | 2.98 |
![]() |
10 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.86813E+01 | 2.87 |
![]() |
11 |
![]() |
![]() |
1/2 | ![]() |
1 | -1.86458E+01 | 2.88 |
![]() |
12 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.84751E+01 | 2.88 |
![]() |
13 |
![]() |
![]() |
1/2 | ![]() |
1 | -1.82444E+01 | 2.90 |
![]() |
14 |
![]() |
![]() |
1/2 | ![]() |
1 | -1.79813E+01 | 2.92 |
![]() |
15 |
![]() |
![]() |
3/2 | ![]() |
1 | -1.66700E+01 | 2.88 |
![]() |
16 |
![]() |
![]() |
5/2 | ![]() |
1 | -1.66046E+01 | 2.88 |
![]() |
![]() |
![]() |
![]() |
nl | J | E(cal) | ![]() |
![]() |
Eqv electron/unidentified levels, parity: e | |||||||
2p4 | 2 | -4.16174E+01 | 3 P e | ||||
2p4 | 1 | -4.14770E+01 | 3 P e | ||||
2p4 | 0 | -4.14331E+01 | 3 P e | ||||
![]() |
|||||||
Nlv=3, 3,o: | P ( 2 1 0 ) | ||||||
2s22p | (2Po) | 1/2 | 3s | 0 | -2.20575E+01 | 2.77 | 3 P o |
2s22p | (2Po) | 3/2 | 3s | 1 | -2.20006E+01 | 2.76 | 3 P o |
2s22p | (2Po) | 3/2 | 3s | 2 | -2.18454E+01 | 2.77 | 3 P o |
Nlv(c)= 3 : set complete | |||||||
Nlv= 1, 1, o: | P ( 1 ) | ||||||
2s22p | (2Po) | 1/2 | 3s | 1 | -2.17248E+01 | 2.79 | 1 P o |
Nlv(c)=1: set complete | |||||||
Nlv=3, 1,e: | S ( 0 ) P ( 1 ) D ( 2 ) | ||||||
2s22p | (2Po) | 1/2 | 3p | 1 | -2.08448E+01 | 2.85 | 1 P e |
2s22p | (2Po) | 3/2 | 3p | 2 | -2.06875E+01 | 2.84 | 1 D e |
2s22p | (2Po) | 3/2 | 3p | 0 | -1.97019E+01 | 2.91 | 1 S e |
Nlv(c)= 3 : set complete | |||||||
Nlv=7, 3,e: | S ( 1 ) P ( 2 1 0 ) D ( 3 2 1 ) | ||||||
2s22p | (2Po) | 3/2 | 3p | 1 | -2.07028E+01 | 2.84 | 3 SPD e |
2s22p | (2Po) | 3/2 | 3p | 3 | -2.05487E+01 | 2.85 | 3 D e |
2s22p | (2Po) | 1/2 | 3p | 0 | -2.05345E+01 | 2.87 | 3 P e |
2s22p | (2Po) | 3/2 | 3p | 1 | -2.05068E+01 | 2.86 | 3 SPD e |
2s22p | (2Po) | 1/2 | 3p | 1 | -2.04340E+01 | 2.88 | 3 SPD e |
2s22p | (2Po) | 3/2 | 3p | 2 | -2.03885E+01 | 2.86 | 3 PD e |
2s22p | (2Po) | 3/2 | 3p | 2 | -2.00647E+01 | 2.89 | 3 PD e |
Nlv(c)=7: set complete | |||||||
Nlv= 3, 5,e: | P ( 3 2 1 ) | ||||||
2s2p2 | (4Pe) | 1/2 | 3s | 1 | -1.99821E+01 | 2.79 | 5 P e |
2s2p2 | (4Pe) | 3/2 | 3s | 2 | -1.99038E+01 | 2.79 | 5 P e |
2s2p2 | (4Pe) | 5/2 | 3s | 3 | -1.98012E+01 | 2.79 | 5 P e |
Nlv(c)= 3: set complete | |||||||
Nlv=3, 1,o: | P ( 1 ) D ( 2 ) F ( 3 ) | ||||||
2s22p | (2Po) | 1/2 | 3d | 2 | -1.95754E+01 | 2.94 | 1 D o |
2s22p | (2Po) | 3/2 | 3d | 3 | -1.87869E+01 | 2.98 | 1 F o |
2s22p | (2Po) | 3/2 | 3d | 1 | -1.87724E+01 | 2.98 | 1 P o |
![]() |
|||||||
Nlv= 9, 3,o: | P ( 2 1 0 ) D ( 3 2 1 ) F ( 4 3 2 ) | ||||||
2s22p | (2Po) | 1/2 | 3d | 3 | -1.94634E+01 | 2.95 | 3 DF o |
2s22p | (2Po) | 3/2 | 3d | 2 | -1.94284E+01 | 2.93 | 3 PDF o |
2s22p | (2Po) | 3/2 | 3d | 4 | -1.93579E+01 | 2.94 | 3 F o |
2s22p | (2Po) | 1/2 | 3d | 1 | -1.92584E+01 | 2.96 | 3 PD o |
2s22p | (2Po) | 3/2 | 3d | 2 | -1.92077E+01 | 2.95 | 3 PDF o |
2s22p | (2Po) | 3/2 | 3d | 3 | -1.91768E+01 | 2.95 | 3 DF o |
2s22p | (2Po) | 3/2 | 3d | 2 | -1.91492E+01 | 2.95 | 3 PDF o |
2s22p | (2Po) | 3/2 | 3d | 1 | -1.91117E+01 | 2.96 | 3 PD o |
2s22p | (2Po) | 3/2 | 3d | 0 | -1.90794E+01 | 2.96 | 3 P o |
![]() |
|||||||
Nlv= 9, 3,e: | G ( 5 4 3 ) H ( 6 5 4 ) I ( 7 6 5 ) | ||||||
2s22p | (2Po) | 1/2 | 6h | 4 | -4.69457E+00 | 6.00 | 3 GH e |
2s22p | (2Po) | 1/2 | 6h | 5 | -4.69457E+00 | 6.00 | 3 GHI e |
2s22p | (2Po) | 1/2 | 6h | 6 | -4.69455E+00 | 6.00 | 3 HI e |
2s22p | (2Po) | 3/2 | 6h | 7 | -4.48800E+00 | 6.00 | 3 I e |
2s22p | (2Po) | 3/2 | 6h | 3 | -4.48795E+00 | 6.00 | 3 G e |
![]() |
|||||||
Nlv=3, 1,o: | P ( 1 ) D ( 2 ) F ( 3 ) | ||||||
2s22p | (2Po) | 3/2 | 6d | 2 | -4.58862E+00 | 5.94 | 1 D o |
2s22p | (2Po) | 3/2 | 6d | 3 | -4.54791E+00 | 5.96 | 1 F o |
2s22p | (2Po) | 3/2 | 6d | 1 | -4.54451E+00 | 5.96 | 1 P o |
![]() |
i | ![]() |
![]() |
![]() |
nl | J |
![]() |
![]() |
![]() |
NJ= 64, ![]() ![]() |
||||||||
1 |
![]() |
0 | -1.24292E+02 |
![]() |
||||
2 |
![]() |
0 | -1.20849E+02 |
![]() |
||||
3 | ![]() |
0 | -1.08406E+02 |
![]() |
||||
4 | ![]() |
0 | -1.05511E+02 |
![]() |
||||
5 |
![]() |
![]() |
1/2 | ![]() |
0 | -5.21862E+01 | 2.91 |
![]() |
6 |
![]() |
![]() |
1/2 | ![]() |
0 | -5.03119E+01 | 2.86 |
![]() |
7 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.99106E+01 | 2.94 |
![]() |
8 |
![]() |
![]() |
1/2 | ![]() |
0 | -4.66313E+01 | 2.85 |
![]() |
9 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.62816E+01 | 2.96 |
![]() |
10 |
![]() |
![]() |
1/2 | ![]() |
0 | -4.52695E+01 | 2.85 |
![]() |
11 |
![]() |
![]() |
5/2 | ![]() |
0 | -4.52395E+01 | 2.97 |
![]() |
12 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.30183E+01 | 2.98 |
![]() |
13 |
![]() |
![]() |
5/2 | ![]() |
0 | -4.22934E+01 | 2.99 |
![]() |
14 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.08816E+01 | 2.97 |
![]() |
15 | ![]() |
![]() |
3/2 | ![]() |
0 | -4.01067E+01 | 2.92 |
![]() |
16 | ![]() |
![]() |
3/2 | ![]() |
0 | -3.85891E+01 | 2.93 |
![]() |
NJ= 61, ![]() ![]() |
||||||||
1 |
![]() |
0 | -1.15895E+02 |
![]() |
||||
2 |
![]() |
![]() |
1/2 | ![]() |
0 | -5.48009E+01 | 2.84 |
![]() |
3 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.90612E+01 | 2.97 |
![]() |
4 |
![]() |
![]() |
1/2 | ![]() |
0 | -4.89298E+01 | 2.89 |
![]() |
5 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.73308E+01 | 2.93 |
![]() |
6 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.50107E+01 | 2.92 |
![]() |
7 |
![]() |
![]() |
1/2 | ![]() |
0 | -4.46865E+01 | 2.90 |
![]() |
8 |
![]() |
![]() |
3/2 | ![]() |
0 | -4.35887E+01 | 2.89 |
![]() |
9 |
![]() |
![]() |
1/2 | ![]() |
0 | -4.31686E+01 | 2.91 |
![]() |
10 | ![]() |
![]() |
1/2 | ![]() |
0 | -3.98818E+01 | 2.85 |
![]() |
11 | ![]() |
![]() |
3/2 | ![]() |
0 | -3.89417E+01 | 2.96 |
![]() |
12 | ![]() |
![]() |
3/2 | ![]() |
0 | -3.74513E+01 | 2.96 |
![]() |
13 | ![]() |
![]() |
5/2 | ![]() |
0 | -3.66926E+01 | 2.98 |
![]() |
14 | ![]() |
![]() |
3/2 | ![]() |
0 | -3.53176E+01 | 2.96 |
![]() |
15 |
![]() |
![]() |
1/2 | ![]() |
0 | -2.97182E+01 | 3.85 |
![]() |
16 |
![]() |
![]() |
3/2 | ![]() |
0 | -2.69365E+01 | 3.97 |
![]() |
NJ= 153,
![]() |
||||||||
1 |
![]() |
1 | -1.23615E+02 |
![]() |
||||
2 | ![]() |
1 | -1.08363E+02 |
![]() |
||||
3 |
![]() |
![]() |
1/2 | ![]() |
1 | -5.28040E+01 | 2.89 |
![]() |
4 |
![]() |
![]() |
1/2 | ![]() |
1 | -5.23926E+01 | 2.90 |
![]() |
5 |
![]() |
![]() |
3/2 | ![]() |
1 | -5.15048E+01 | 2.90 |
![]() |
6 |
![]() |
![]() |
3/2 | ![]() |
1 | -5.13231E+01 | 2.90 |
![]() |
7 |
![]() |
![]() |
1/2 | ![]() |
1 | -5.09584E+01 | 2.84 |
![]() |
8 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.96425E+01 | 2.86 |
![]() |
9 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.78489E+01 | 2.84 |
![]() |
10 |
![]() |
![]() |
1/2 | ![]() |
1 | -4.68999E+01 | 2.95 |
![]() |
11 |
![]() |
![]() |
1/2 | ![]() |
1 | -4.65180E+01 | 2.82 |
![]() |
12 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.62583E+01 | 2.96 |
![]() |
13 |
![]() |
![]() |
1/2 | ![]() |
1 | -4.58680E+01 | 2.87 |
![]() |
14 |
![]() |
![]() |
5/2 | ![]() |
1 | -4.55835E+01 | 2.96 |
![]() |
15 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.53921E+01 | 2.85 |
![]() |
16 |
![]() |
![]() |
5/2 | ![]() |
1 | -4.52726E+01 | 2.97 |
![]() |
NJ= 157,
![]() |
||||||||
1 |
![]() |
1 | -1.17168E+02 |
![]() |
||||
2 |
![]() |
1 | -1.15815E+02 |
![]() |
||||
3 |
![]() |
1 | -1.14241E+02 |
![]() |
||||
4 |
![]() |
1 | -1.12695E+02 |
![]() |
||||
5 |
![]() |
![]() |
3/2 | ![]() |
1 | -5.45579E+01 | 2.81 |
![]() |
6 |
![]() |
![]() |
1/2 | ![]() |
1 | -5.36838E+01 | 2.87 |
![]() |
7 |
![]() |
![]() |
1/2 | ![]() |
1 | -4.98528E+01 | 2.97 |
![]() |
8 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.92676E+01 | 2.96 |
![]() |
9 |
![]() |
![]() |
1/2 | ![]() |
1 | -4.89841E+01 | 2.89 |
![]() |
10 |
![]() |
![]() |
1/2 | ![]() |
1 | -4.87720E+01 | 2.90 |
![]() |
11 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.84796E+01 | 2.98 |
![]() |
12 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.79949E+01 | 2.91 |
![]() |
13 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.78167E+01 | 2.91 |
![]() |
14 |
![]() |
![]() |
1/2 | ![]() |
1 | -4.69872E+01 | 2.95 |
![]() |
15 |
![]() |
![]() |
3/2 | ![]() |
1 | -4.57908E+01 | 2.90 |
![]() |
16 |
![]() |
![]() |
5/2 | ![]() |
1 | -4.51108E+01 | 2.91 |
![]() |
![]() |
![]() |
![]() |
nl | J | E(cal) | ![]() |
![]() |
Nlv= 3, 3,o: | P ( 2 1 0 ) | ||||||
2s22p | (2Po) | 1/2 | 3s | 0 | -5.48009E+01 | 2.84 | 3 P o |
2s22p | (2Po) | 3/2 | 3s | 1 | -5.45579E+01 | 2.81 | 3 P o |
2s22p | (2Po) | 3/2 | 3s | 2 | -5.37314E+01 | 2.84 | 3 P o |
![]() |
|||||||
Nlv=1, 1,o: | P ( 1 ) | ||||||
2s22p | (2Po) | 1/2 | 3s | 1 | -5.36838E+01 | 2.87 | 1 P o |
![]() |
|||||||
Nlv= 7, 3,e: | S ( 1 ) P ( 2 1 0 ) D ( 3 2 1 ) | ||||||
2s22p | (2Po) | 1/2 | 3p | 1 | -5.28040E+01 | 2.89 | 3 SPD e |
2s22p | (2Po) | 1/2 | 3p | 1 | -5.23926E+01 | 2.90 | 3 SPD e |
2s22p | (2Po) | 1/2 | 3p | 2 | -5.23595E+01 | 2.90 | 3 PD e |
2s22p | (2Po) | 1/2 | 3p | 0 | -5.21862E+01 | 2.91 | 3 P e |
2s22p | (2Po) | 3/2 | 3p | 3 | -5.14268E+01 | 2.90 | 3 D e |
2s22p | (2Po) | 3/2 | 3p | 1 | -5.13231E+01 | 2.90 | 3 SPD e |
2s22p | (2Po) | 3/2 | 3p | 2 | -5.12455E+01 | 2.90 | 3 PD e |
![]() |
|||||||
Nlv= 3, 1,e: | S ( 0 ) P ( 1 ) D ( 2 ) | ||||||
2s22p | (2Po) | 3/2 | 3p | 1 | -5.15048E+01 | 2.90 | 1 P e |
2s22p | (2Po) | 3/2 | 3p | 2 | -5.07154E+01 | 2.92 | 1 D e |
2s22p | (2Po) | 3/2 | 3p | 0 | -4.99106E+01 | 2.94 | 1 S e |
![]() |
|||||||
Nlv= 3, 5,e: | P ( 3 2 1 ) | ||||||
2s2p2 | (4Pe) | 1/2 | 3s | 1 | -5.09584E+01 | 2.84 | 5 P e |
2s2p2 | (4Pe) | 3/2 | 3s | 2 | -5.05218E+01 | 2.84 | 5 P e |
2s2p2 | (4Pe) | 5/2 | 3s | 3 | -5.00672E+01 | 2.84 | 5 P e |
Nlv(c)= 3: set complete | |||||||
Nlv= 3, 1,o: | P ( 1 ) D ( 2 ) F ( 3 ) | ||||||
2s22p | (2Po) | 1/2 | 3d | 2 | -5.05889E+01 | 2.95 | 1 D o |
2s22p | (2Po) | 3/2 | 3d | 3 | -4.85779E+01 | 2.98 | 1 F o |
2s22p | (2Po) | 3/2 | 3d | 1 | -4.84796E+01 | 2.98 | 1 P o |
![]() |
|||||||
Nlv=3, 3,e: | P ( 2 1 0 ) | ||||||
2s2p2 | (4Pe) | 1/2 | 3s | 0 | -5.03119E+01 | 2.86 | 3 P e |
2s2p2 | (4Pe) | 3/2 | 3s | 1 | -4.96425E+01 | 2.86 | 3 P e |
2s2p2 | (4Pe) | 5/2 | 3s | 2 | -4.91481E+01 | 2.86 | 3 P e |
![]() |
|||||||
Nlv= 9, 3,o: | P ( 2 1 0 ) D ( 3 2 1 ) F ( 4 3 2 ) | ||||||
2s22p | (2Po) | 1/2 | 3d | 3 | -5.00116E+01 | 2.97 | 3 DF o |
2s22p | (2Po) | 1/2 | 3d | 2 | -4.99604E+01 | 2.97 | 3 PDF o |
2s22p | (2Po) | 1/2 | 3d | 1 | -4.98528E+01 | 2.97 | 3 PD o |
2s22p | (2Po) | 3/2 | 3d | 2 | -4.94634E+01 | 2.95 | 3 PDF o |
2s22p | (2Po) | 3/2 | 3d | 4 | -4.94577E+01 | 2.95 | 3 F o |
2s22p | (2Po) | 3/2 | 3d | 3 | -4.94017E+01 | 2.96 | 3 DF o |
2s22p | (2Po) | 3/2 | 3d | 1 | -4.92676E+01 | 2.96 | 3 PD o |
2s22p | (2Po) | 3/2 | 3d | 2 | -4.92368E+01 | 2.96 | 3 PDF o |
2s22p | (2Po) | 3/2 | 3d | 0 | -4.90612E+01 | 2.97 | 3 P o |
![]() |
|||||||
Nlv= 9, 5,o: | S ( 2 ) P ( 3 2 1 ) D ( 4 3 2 1 0 ) | ||||||
2s2p2 | (4Pe) | 1/2 | 3p | 1 | -4.89841E+01 | 2.89 | 5 PD o |
2s2p2 | (4Pe) | 1/2 | 3p | 0 | -4.89298E+01 | 2.89 | 5 D o |
2s2p2 | (4Pe) | 1/2 | 3p | 2 | -4.88377E+01 | 2.90 | 5 SPD o |
2s2p2 | (4Pe) | 1/2 | 3p | 1 | -4.87720E+01 | 2.90 | 5 PD o |
2s2p2 | (4Pe) | 3/2 | 3p | 3 | -4.85537E+01 | 2.89 | 5 PD o |
2s2p2 | (4Pe) | 3/2 | 3p | 2 | -4.82586E+01 | 2.90 | 5 SPD o |
2s2p2 | (4Pe) | 5/2 | 3p | 4 | -4.77166E+01 | 2.90 | 5 D o |
2s2p2 | (4Pe) | 5/2 | 3p | 3 | -4.76095E+01 | 2.90 | 5 PD o |
2s2p2 | (4Pe) | 5/2 | 3p | 2 | -4.72496E+01 | 2.91 | 5 SPD o |
![]() |
|||||||
Nlv=3, 3,e: | D ( 3 2 1 ) | ||||||
2s2p2 | (2De) | 3/2 | 3s | 1 | -4.78489E+01 | 2.84 | 3 D e |
2s2p2 | (2De) | 5/2 | 3s | 2 | -4.77709E+01 | 2.84 | 3 D e |
2s2p2 | (2De) | 5/2 | 3s | 3 | -4.76659E+01 | 2.84 | 3 D e |
![]() |
Two levels with the same configuration and set of quantum numbers can
actually be two independent levels due to outer electron spin
addition/subtraction to/from the parent spin angular momentum, i.e.
.
The lower energies are normally assigned with the higher
spin multiplicity while the higher levels are with the lower spin
multiplicity. However, the energies and effective quantum numbers
(
)
of levels of higher and lower spin multiplicity can be very
close to each other, in which case the observation may show them
otherwise.
Following level identification, a direct correspondence is made with standard spectroscopic designations that follow different coupling schemes, such as between LS and JJ. The correspondence provides the check for completeness of calculated set of levels or the levels missing. A computer program, PRCBPID, is developed to carry out the identification scheme (Nahar & Pradhan 2000).
The level identification procedure involves considerable manipulation of the bound level data and, although it has been encoded for general applications, still requires analysis and interpretation of problem cases of highly mixed levels that are difficult to identify. The mixed states are dominated by a number of channels. The uncertainty in their identification can be large.
Copyright The European Southern Observatory (ESO)