The CCC program furnishes the cross section
as a function of
Ei, the collision energy relative to term i. We convert this to a table
of
as a function of Ej which we then use to calculate
from Eq. (2) by means of the linear interpolation
technique (Burgess & Tully 1992). The upper limit of the integral (2) is
replaced by the value of Ej corresponding to the highest value of Ei at
which the cross section
is calculated by the CCC program.
We checked to make sure that the contribution from higher energies was
negligible. In order to extend our tabulation of
to temperatures
well beyond 500000 degrees it will be necessary to calculate or estimate
collision strengths at higher energies than those considered here.
Alternatively one could make use of the technique developed by Burgess &
Tully (1992) in order to extrapolate the present data
up to higher temperatures.
![]() |
Transition | n=2 | n=3 | n=4 | n=5 | Transition | n=2 | n=3 | n=4 | n=5 | |
3.75 |
![]() |
3.075-2 | 8.431-3 | 2.397-3 | 1.000-3 |
![]() |
6.198-2 | 1.642-2 | 5.317-3 | 2.593-3 | |
4.00 | 3.492-2 | 8.308-3 | 2.505-3 | 1.084-3 | 6.458-2 | 1.584-2 | 5.233-3 | 2.542-3 | |||
4.25 | 3.840-2 | 8.364-3 | 2.642-3 | 1.189-3 | 6.387-2 | 1.530-2 | 5.183-3 | 2.477-3 | |||
4.50 | 4.183-2 | 8.696-3 | 2.856-3 | 1.334-3 | 6.157-2 | 1.486-2 | 5.179-3 | 2.448-3 | |||
4.75 | 4.573-2 | 9.313-3 | 3.178-3 | 1.526-3 | 5.832-2 | 1.434-2 | 5.142-3 | 2.421-3 | |||
5.00 | 5.048-2 | 1.022-2 | 3.628-3 | 1.771-3 | 5.320-2 | 1.346-2 | 4.936-3 | 2.325-3 | |||
5.25 | 5.649-2 | 1.147-2 | 4.210-3 | 2.068-3 | 4.787-2 | 1.198-2 | 4.461-3 | 2.108-3 | |||
5.50 | 6.436-2 | 1.318-2 | 4.941-3 | 2.426-3 | 4.018-2 | 9.968-3 | 3.738-3 | 1.774-3 | |||
5.75 | 7.481-2 | 1.553-2 | 5.888-3 | 2.868-3 | 3.167-2 | 7.741-3 | 2.904-3 | 1.384-3 | |||
3.75 |
![]() |
8.886-3 | 2.783-3 | 1.046-3 | 6.597-4 |
![]() |
1.716-2 | 6.041-3 | 2.074-3 | 1.193-3 | |
4.00 | 1.299-2 | 3.678-3 | 1.504-3 | 9.203-4 | 2.233-2 | 6.906-3 | 2.468-3 | 1.466-3 | |||
4.25 | 1.910-2 | 5.128-3 | 2.143-3 | 1.223-3 | 2.826-2 | 7.931-3 | 2.983-3 | 1.762-3 | |||
4.50 | 3.006-2 | 7.760-3 | 3.173-3 | 1.701-3 | 3.477-2 | 9.178-3 | 3.585-3 | 2.070-3 | |||
4.75 | 5.178-2 | 1.295-2 | 5.180-3 | 2.673-3 | 4.128-2 | 1.059-2 | 4.236-3 | 2.378-3 | |||
5.00 | 9.534-2 | 2.343-2 | 9.287-3 | 4.706-3 | 4.635-2 | 1.185-2 | 4.796-3 | 2.625-3 | |||
5.25 | 1.778-1 | 4.340-2 | 1.713-3 | 8.605-3 | 4.800-2 | 1.240-2 | 5.048-3 | 2.704-3 | |||
5.50 | 3.167-1 | 7.716-2 | 3.040-2 | 1.521-2 | 4.503-2 | 1.184-2 | 4.832-3 | 2.545-3 | |||
5.75 | 5.217-1 | 1.274-1 | 5.023-2 | 2.515-2 | 3.808-2 | 1.020-2 | 4.169-3 | 2.166-3 | |||
3.75 |
![]() |
3.884-3 | 1.416-3 | 7.906-4 |
![]() |
1.863-3 | 1.030-3 | 8.023-4 | |||
4.00 | 3.809-3 | 1.442-3 | 8.285-4 | 2.060-3 | 1.125-3 | 8.630-4 | |||||
4.25 | 3.783-3 | 1.548-3 | 8.888-4 | 2.202-3 | 1.247-3 | 9.306-4 | |||||
4.50 | 3.942-3 | 1.764-3 | 1.009-3 | 2.322-3 | 1.354-3 | 9.867-4 | |||||
4.75 | 4.390-3 | 2.152-3 | 1.230-3 | 2.396-3 | 1.407-3 | 9.957-4 | |||||
5.00 | 5.266-3 | 2.790-3 | 1.585-3 | 2.372-3 | 1.389-3 | 9.480-4 | |||||
5.25 | 6.598-3 | 3.642-3 | 2.047-3 | 2.195-3 | 1.283-3 | 8.485-4 | |||||
5.50 | 8.159-3 | 4.521-3 | 2.522-3 | 1.860-3 | 1.087-3 | 7.044-4 | |||||
5.75 | 9.556-3 | 5.222-3 | 2.900-3 | 1.434-3 | 8.368-4 | 5.371-4 | |||||
3.75 |
![]() |
5.864-4 | 4.221-4 |
![]() |
5.082-4 | 5.039-4 | |||||
4.00 | 4.917-4 | 3.813-4 | 4.547-4 | 4.501-4 | |||||||
4.25 | 4.101-4 | 3.488-4 | 3.748-4 | 3.664-4 | |||||||
4.50 | 3.467-4 | 3.149-4 | 2.945-4 | 2.801-4 | |||||||
4.75 | 3.011-4 | 2.797-4 | 2.268-4 | 2.078-4 | |||||||
5.00 | 2.697-4 | 2.472-4 | 1.724-4 | 1.525-4 | |||||||
5.25 | 2.436-4 | 2.179-4 | 1.279-4 | 1.111-4 | |||||||
5.50 | 2.135-4 | 1.881-4 | 9.081-5 | 7.878-5 | |||||||
5.75 | 1.781-4 | 1.564-4 | 6.114-5 | 5.335-5 | |||||||
3.75 |
![]() |
1.938-4 |
![]() |
3.037-4 | |||||||
4.00 | 1.551-4 | 2.389-4 | |||||||||
4.25 | 1.158-4 | 1.717-4 | |||||||||
4.50 | 8.143-5 | 1.157-4 | |||||||||
4.75 | 5.484-5 | 7.485-5 | |||||||||
5.00 | 3.640-5 | 4.734-5 | |||||||||
5.25 | 2.473-5 | 2.968-5 | |||||||||
5.50 | 1.742-5 | 1.860-5 | |||||||||
5.75 | 1.244-5 | 1.197-5 |
![]() |
Transition | n=2 | n=3 | n=4 | n=5 | Transition | n=2 | n=3 | n=4 | n=5 | |
3.75 |
![]() |
2.389 | 3.544-1 | 1.199-1 | 5.624-2 |
![]() |
2.410 | 6.651-1 | 2.321-1 | ||
4.00 | 2.456 | 3.295-1 | 1.062-1 | 4.930-2 | 2.286 | 5.911-1 | 2.154-1 | ||||
4.25 | 2.275 | 2.832-1 | 8.877-2 | 4.129-2 | 2.235 | 5.383-1 | 2.001-1 | ||||
4.50 | 1.916 | 2.280-1 | 7.059-2 | 3.305-2 | 2.370 | 5.328-1 | 2.009-1 | ||||
4.75 | 1.496 | 1.730-1 | 5.351-2 | 2.517-2 | 2.761 | 5.919-1 | 2.265-1 | ||||
5.00 | 1.111 | 1.247-1 | 3.870-2 | 1.823-2 | 3.397 | 7.092-1 | 2.732-1 | ||||
5.25 | 8.003-1 | 8.624-2 | 2.682-2 | 1.261-2 | 4.187 | 8.591-1 | 3.302-1 | ||||
5.50 | 5.660-1 | 5.765-2 | 1.793-2 | 8.402-3 | 5.013 | 1.016 | 3.889-1 | ||||
5.75 | 3.944-1 | 3.747-2 | 1.165-2 | 5.419-3 | 5.755 | 1.163 | 4.443-1 | ||||
3.75 |
![]() |
7.965-1 | 1.306-1 | 4.941-2 | 3.272-2 |
![]() |
1.508+1 | 1.606 | 4.476-1 | 1.833-1 | |
4.00 | 9.579-1 | 1.499-1 | 5.791-2 | 3.599-2 | 2.580+1 | 1.611 | 4.465-1 | 1.936-1 | |||
4.25 | 1.042 | 1.543-1 | 6.089-2 | 3.587-2 | 4.185+1 | 1.576 | 4.476-1 | 2.015-1 | |||
4.50 | 1.015 | 1.439-1 | 5.740-2 | 3.259-2 | 6.455+1 | 1.552 | 4.578-1 | 2.105-1 | |||
4.75 | 8.950-1 | 1.234-1 | 4.930-2 | 2.730-2 | 9.526+1 | 1.615 | 4.938-1 | 2.291-1 | |||
5.00 | 7.265-1 | 9.896-2 | 3.939-2 | 2.141-2 | 1.351+2 | 1.868 | 5.842-1 | 2.707-1 | |||
5.25 | 5.516-1 | 7.494-2 | 2.964-2 | 1.586-2 | 1.842+2 | 2.410 | 7.603-1 | 3.493-1 | |||
5.50 | 3.948-1 | 5.367-2 | 2.106-2 | 1.114-2 | 2.401+2 | 3.274 | 1.037 | 4.719-1 | |||
5.75 | 2.677-1 | 3.639-2 | 1.419-2 | 7.434-3 | 2.976+2 | 4.382 | 1.408 | 6.315-1 | |||
3.75 |
![]() |
2.479-1 | 8.385-2 | 4.285-2 |
![]() |
1.392 | 3.528-1 | 1.678-1 | |||
4.00 | 2.591-1 | 8.375-2 | 4.240-2 | 1.954 | 4.605-1 | 2.013-1 | |||||
4.25 | 2.558-1 | 8.145-2 | 4.053-2 | 2.760 | 6.158-1 | 2.496-1 | |||||
4.50 | 2.375-1 | 7.635-2 | 3.781-2 | 3.900 | 8.407-1 | 3.309-1 | |||||
4.75 | 2.071-1 | 6.833-2 | 3.398-2 | 5.496 | 1.182 | 4.661-1 | |||||
5.00 | 1.694-1 | 5.755-2 | 2.874-2 | 7.599 | 1.672 | 6.649-1 | |||||
5.25 | 1.292-1 | 4.502-2 | 2.253-2 | 9.990 | 2.262 | 9.058-1 | |||||
5.50 | 9.188-2 | 3.264-2 | 1.635-2 | 1.226+1 | 2.841 | 1.143 | |||||
5.75 | 6.137-2 | 2.212-2 | 1.108-2 | 1.408+1 | 3.319 | 1.339 | |||||
3.75 |
![]() |
4.106-2 | 2.766-2 |
![]() |
3.325-1 | 1.840-1 | |||||
4.00 | 4.019-2 | 2.809-2 | 3.889-1 | 2.165-1 | |||||||
4.25 | 3.838-2 | 2.713-2 | 4.620-1 | 2.564-1 | |||||||
4.50 | 3.475-2 | 2.450-2 | 5.534-1 | 3.066-1 | |||||||
4.75 | 2.954-2 | 2.068-2 | 6.671-1 | 3.692-1 | |||||||
5.00 | 2.341-2 | 1.628-2 | 7.814-1 | 4.329-1 | |||||||
5.25 | 1.719-2 | 1.192-2 | 8.556-1 | 4.769-1 | |||||||
5.50 | 1.175-2 | 8.147-3 | 8.707-1 | 4.903-1 | |||||||
5.75 | 7.577-3 | 5.257-3 | 8.385-1 | 4.774-1 | |||||||
3.75 |
![]() |
1.409-2 |
![]() |
8.969-2 | |||||||
4.00 | 1.175-2 | 8.533-2 | |||||||||
4.25 | 9.224-3 | 7.928-2 | |||||||||
4.50 | 6.900-3 | 7.392-2 | |||||||||
4.75 | 4.932-3 | 6.903-2 | |||||||||
5.00 | 3.359-3 | 6.279-2 | |||||||||
5.25 | 2.181-3 | 5.440-2 | |||||||||
5.50 | 1.360-3 | 4.498-2 | |||||||||
5.75 | 8.284-4 | 3.616-2 |
![]() |
Transition | n=2 | n=3 | n=4 | n=5 | Transition | n=2 | n=3 | n=4 | n=5 | |
3.75 |
![]() |
5.290-1 | 1.237-1 | 4.939-2 |
![]() |
6.360-1 | 2.118-1 | 8.235-2 | |||
4.00 | 5.736-1 | 1.268-1 | 4.801-2 | 5.308-1 | 1.753-1 | 7.071-2 | |||||
4.25 | 6.711-1 | 1.371-1 | 5.053-2 | 4.177-1 | 1.368-1 | 5.659-2 | |||||
4.50 | 8.581-1 | 1.667-1 | 6.149-2 | 3.131-1 | 1.017-1 | 4.293-2 | |||||
4.75 | 1.149 | 2.224-1 | 8.346-2 | 2.252-1 | 7.260-2 | 3.113-2 | |||||
5.00 | 1.526 | 2.990-1 | 1.137-1 | 1.566-2 | 4.992-2 | 2.164-2 | |||||
5.25 | 1.940 | 3.836-1 | 1.467-1 | 1.061-2 | 3.325-2 | 1.449-2 | |||||
5.50 | 2.344 | 4.653-1 | 1.782-1 | 7.073-2 | 2.161-2 | 9.418-3 | |||||
5.75 | 2.705 | 5.373-1 | 2.063-1 | 4.654-2 | 1.378-2 | 5.987-3 | |||||
3.75 |
![]() |
1.099+1 | 2.806-1 | 8.756-2 | 4.363-2 |
![]() |
1.591 | 4.914-1 | 1.520-1 | 5.736-2 | |
4.00 | 1.929+1 | 3.409-1 | 1.136-1 | 5.476-2 | 1.728 | 4.684-1 | 1.437-1 | 5.789-2 | |||
4.25 | 3.097+1 | 4.246-1 | 1.480-1 | 6.919-2 | 1.735 | 4.092-1 | 1.273-1 | 5.383-2 | |||
4.50 | 4.628+1 | 5.629-1 | 1.945-1 | 8.892-2 | 1.579 | 3.304-1 | 1.053-1 | 4.629-2 | |||
4.75 | 6.536+1 | 8.352-1 | 2.694-1 | 1.208-1 | 1.310 | 2.503-1 | 8.195-2 | 3.715-2 | |||
5.00 | 8.828+1 | 1.374 | 4.034-1 | 1.769-1 | 1.008 | 1.806-1 | 6.048-2 | 2.803-2 | |||
5.25 | 1.146+2 | 2.301 | 6.265-1 | 2.685-1 | 7.297-1 | 1.250-1 | 4.251-2 | 1.996-2 | |||
5.50 | 1.430+2 | 3.638 | 9.482-1 | 3.996-1 | 5.015-1 | 8.311-2 | 2.850-2 | 1.347-2 | |||
5.75 | 1.719+2 | 5.299 | 1.354 | 5.658-1 | 3.292-1 | 5.312-2 | 1.829-2 | 8.677-3 | |||
3.75 |
![]() |
8.375-1 | 2.070-1 | 7.112-2 |
![]() |
2.596-1 | 7.885-2 | 4.162-2 | |||
4.00 | 1.167 | 2.355-1 | 8.076-2 | 3.050-1 | 8.766-2 | 4.405-2 | |||||
4.25 | 1.675 | 2.874-1 | 9.700-2 | 3.263-1 | 9.224-2 | 4.461-2 | |||||
4.50 | 2.438 | 3.808-1 | 1.296-1 | 3.166-1 | 9.066-2 | 4.341-2 | |||||
4.75 | 3.529 | 5.415-1 | 1.893-1 | 2.824-1 | 8.324-2 | 4.007-2 | |||||
5.00 | 4.941 | 7.779-1 | 2.781-1 | 2.332-1 | 7.090-2 | 3.430-2 | |||||
5.25 | 6.494 | 1.058 | 3.829-1 | 1.782-1 | 5.558-2 | 2.693-2 | |||||
5.50 | 7.930 | 1.328 | 4.830-1 | 1.265-1 | 4.019-2 | 1.947-2 | |||||
5.75 | 9.070 | 1.548 | 5.637-1 | 8.433-2 | 2.714-2 | 1.312-2 | |||||
3.75 |
![]() |
1.837-1 | 8.834-2 |
![]() |
5.952-2 | 3.836-2 | |||||
4.00 | 2.230-1 | 1.039-1 | 6.338-2 | 4.042-2 | |||||||
4.25 | 2.829-1 | 1.295-1 | 6.369-2 | 4.009-2 | |||||||
4.50 | 3.657-1 | 1.681-1 | 5.925-2 | 3.707-2 | |||||||
4.75 | 4.717-1 | 2.204-1 | 5.112-2 | 3.201-2 | |||||||
5.00 | 5.799-1 | 2.762-1 | 4.083-2 | 2.568-2 | |||||||
5.25 | 6.564-1 | 3.192-1 | 3.011-2 | 1.903-2 | |||||||
5.50 | 6.864-1 | 3.409-1 | 2.062-2 | 1.310-2 | |||||||
5.75 | 6.807-1 | 3.443-1 | 1.330-2 | 8.484-3 | |||||||
3.75 |
![]() |
4.146-2 |
![]() |
2.367-2 | |||||||
4.00 | 4.233-2 | 1.929-2 | |||||||||
4.25 | 4.377-2 | 1.507-2 | |||||||||
4.50 | 4.673-2 | 1.140-2 | |||||||||
4.75 | 4.971-2 | 8.329-3 | |||||||||
5.00 | 5.011-2 | 5.804-3 | |||||||||
5.25 | 4.685-2 | 3.842-3 | |||||||||
5.50 | 4.115-2 | 2.429-3 | |||||||||
5.75 | 3.499-2 | 1.486-3 |
![]() |
Transition | n=2 | n=3 | n=4 | n=5 | Transition | n=2 | n=3 | n=4 | n=5 | |
3.75 |
![]() |
6.756-1 | 2.971-1 | 1.446-1 |
![]() |
5.858 | 2.192 | 5.585-1 | |||
4.00 | 6.387-1 | 2.664-1 | 1.276-1 | 5.614 | 1.778 | 5.196-1 | |||||
4.25 | 5.623-1 | 2.255-1 | 1.074-1 | 5.828 | 1.513 | 4.854-1 | |||||
4.50 | 4.633-1 | 1.801-1 | 8.586-2 | 7.035 | 1.432 | 4.860-1 | |||||
4.75 | 3.582-1 | 1.359-1 | 6.503-2 | 9.926 | 1.587 | 5.507-1 | |||||
5.00 | 2.610-1 | 9.742-2 | 4.678-2 | 1.524+1 | 2.026 | 6.982-1 | |||||
5.25 | 1.803-1 | 6.655-2 | 3.204-2 | 2.332+1 | 2.750 | 9.268-1 | |||||
5.50 | 1.188-1 | 4.351-2 | 2.097-2 | 3.372+1 | 3.700 | 1.217 | |||||
5.75 | 7.516-2 | 2.738-2 | 1.320-2 | 4.549+1 | 4.797 | 1.549 | |||||
3.75 |
![]() |
3.689 | 8.012-1 | 2.403-1 | 1.246-1 |
![]() |
1.295+1 | 3.340 | 1.101 | ||
4.00 | 4.259 | 8.612-1 | 2.671-1 | 1.370-1 | 1.325+1 | 3.265 | 1.151 | ||||
4.25 | 4.507 | 8.397-1 | 2.699-1 | 1.374-1 | 1.399+1 | 3.278 | 1.215 | ||||
4.50 | 4.321 | 7.465-1 | 2.475-1 | 1.253-1 | 1.555+1 | 3.471 | 1.329 | ||||
4.75 | 3.800 | 6.137-1 | 2.082-1 | 1.051-1 | 1.815+1 | 3.912 | 1.527 | ||||
5.00 | 3.135 | 4.752-1 | 1.637-1 | 8.244-2 | 2.177+1 | 4.586 | 1.804 | ||||
5.25 | 2.464 | 3.510-1 | 1.218-1 | 6.106-2 | 2.600+1 | 5.404 | 2.125 | ||||
5.50 | 1.857 | 2.479-1 | 8.619-2 | 4.297-2 | 3.031+1 | 6.240 | 2.444 | ||||
5.75 | 1.346 | 1.674-1 | 5.809-2 | 2.886-2 | 3.425+1 | 6.988 | 2.727 | ||||
3.75 |
![]() |
1.333 | 4.536-1 | 2.103-1 |
![]() |
1.003+1 | 2.860 | 1.357 | |||
4.00 | 1.353 | 4.278-1 | 1.998-1 | 1.438+1 | 3.613 | 1.587 | |||||
4.25 | 1.303 | 3.940-1 | 1.832-1 | 2.173+1 | 4.820 | 1.961 | |||||
4.50 | 1.192 | 3.539-1 | 1.639-1 | 3.489+1 | 6.907 | 2.676 | |||||
4.75 | 1.032 | 3.074-1 | 1.426-1 | 5.878+1 | 1.071+1 | 4.041 | |||||
5.00 | 8.388-1 | 2.534-1 | 1.180-1 | 9.961+1 | 1.725+1 | 6.387 | |||||
5.25 | 6.339-1 | 1.949-1 | 9.106-2 | 1.610+2 | 2.697+1 | 9.836 | |||||
5.50 | 4.467-1 | 1.394-1 | 6.532-2 | 2.404+2 | 3.937+1 | 1.418+1 | |||||
5.75 | 2.965-1 | 9.361-2 | 4.392-2 | 3.309+2 | 5.344+1 | 1.908+1 | |||||
3.75 |
![]() |
2.011-1 | 1.565-1 |
![]() |
2.400 | 1.364 | |||||
4.00 | 1.921-1 | 1.445-1 | 2.836 | 1.533 | |||||||
4.25 | 1.830-1 | 1.306-1 | 3.497 | 1.809 | |||||||
4.50 | 1.683-1 | 1.147-1 | 4.478 | 2.253 | |||||||
4.75 | 1.458-1 | 9.666-2 | 5.866 | 2.906 | |||||||
5.00 | 1.170-1 | 7.659-2 | 7.490 | 3.693 | |||||||
5.25 | 8.647-2 | 5.636-2 | 8.936 | 4.422 | |||||||
5.50 | 5.919-2 | 3.863-2 | 9.920 | 4.966 | |||||||
5.75 | 3.814-2 | 2.499-2 | 1.043+1 | 5.240 | |||||||
3.75 |
![]() |
6.174-2 |
![]() |
6.103-1 | |||||||
4.00 | 5.161-2 | 5.874-1 | |||||||||
4.25 | 4.157-2 | 5.743-1 | |||||||||
4.50 | 3.257-2 | 5.844-1 | |||||||||
4.75 | 2.459-2 | 6.035-1 | |||||||||
5.00 | 1.758-2 | 6.009-1 | |||||||||
5.25 | 1.181-2 | 5.601-1 | |||||||||
5.50 | 7.523-3 | 4.928-1 | |||||||||
5.75 | 4.597-3 | 4.207-1 |
![]() |
Figure 1: Effective collision strengths vs. T/104. Full line, Sawey & Berrington (1993); dashed line, present results |
Until now the best source of effective collision strengths has been Sawey &
Berrington (1993) - hereafter SB - their data being based on a 29-state
R-matrix calculation (Sawey et al. 1990). Using SB's tables one can
obtain electron rate coefficients for 157 of the 171 transitions that exist
between levels with principal quantum number .
This tabulation is an improvement on
the one produced by Berrington & Kingston (1987) - hereafter BK - from
a 19-state R-matrix calculation for transitions between levels with
.
During a workshop for assessing atomic data, which was held in Saint
Catherine's College Oxford in 1987, Pradhan (1987) had this to say about the
reliability of their data: "For neutral helium the work by Berrington &
Kingston, which included the n = 4 levels, is rated as having an
uncertainty of 10% for excitation to the n = 2 states and an uncertainty
of 30% for transitions to the n = 3 states''.
The tabulations of
in BK and in SB extend only as far as 30000
degrees. There are, however, astrophysical situations where helium rate
coefficients are needed at temperatures of the order of 120000 degrees
(Bouret 1998); and in the domain of controlled thermonuclear research Summers
(1999) tells us that experiments are being performed in which neutral helium
is used as a diagnostic tool by being injected into plasmas where the electron
temperature can be as high as
degrees.
The CCC approximation is not subject to the restrictions which limit the
R-matrix method with increasing
collision energy. As a result we are able to
obtain converged cross sections when
.
After being
thermally averaged these provide rate coefficients for temperatures up to
about 500000 degrees.
In Tables 2 - 5 we give effective collision strengths
over the
temperature range
.
Because of the
uncertainty that pseudo resonances introduce into our cross sections at
energies close to threshold, we limit the low temperature end of our
tabulation to about 6000 degrees.
Some values of
in Tables 2 - 5 are given in the form ab, where
b denotes the power of 10 by which a should be multiplied. In Fig. 1
we compare our results with those of SB for excitation from
to the eight levels
.
For the three highest lying levels, namely
,
our results lie above or very close to
those of SB. For all the other transitions in Fig. 1 our results lie below
SB's. This is not true at very low temperatures for
and
.
We find that
has a narrow peak just above
threshold energy and it is this pseudo resonance which causes
to rise steeply as
.
There are two transitions, namely
,
for which the differences are of the order of a factor of 3.
In Section 6 we give a physical explanation why SB's results and ours can
sometimes differ by a large amount.
Copyright The European Southern Observatory (ESO)