The Relativistic Quantum Defect Orbital (RQDO) method has been described in detail in previous papers (Karwowski & Martín 1991; Martín et al. 1993). Therefore, we shall only briefly summarise its most fundamental aspects.
Transition | |||
0.761(-1) | 0.114 | 0.191 | |
0.74(-1) | 0.110 | 0.184 | |
0.521(-1) | 0.778(-1) | 0.130 | |
0.58(-1) | 0.86(-1) | 0.144 | |
0.690(-2) | 0.104(-1) | 0.173(-1) | |
- | 0.11(-1) | 0.181(-1) | |
0.210(-2) | 0.315(-2) | 0.525(-2) | |
- | - | 0.532(-2) | |
0.905(-3) | 0.138(-2) | 0.229(-2) | |
- | - | 0.229(-2) | |
0.489(-3) | 0.736(-3) | 0.123(-2) | |
- | - | 0.120(-2) | |
0.114(+1) | 0.171(+1) | 0.285(+1) | |
0.113(+1) | 0.170(+1) | 0.283(+1) | |
0.355 | 0.530 | 0.885 | |
0.393 | 0.59 | 0.983 | |
0.471(-1) | 0.706(-1) | 0.118 | |
0.50(-1) | 0.74(-1) | 0.124 | |
0.141(-1) | 0.213(-1) | 0.354(-1) | |
0.15(-1) | 0.22(-1) | 0.364(-1) | |
0.614(-2) | 0.923(-2) | 0.154(-1) | |
- | - | 0.156(-1) |
In this and the remaining tables, A(B) denotes
.
S-values are given in atomic units.
The first entry corresponds to RQDO S-values from this work.
The second entry corresponds to comparative values.
For the fine-structure lines: Critical compilation (Fuhr et al. 1988).
For the multiplets: Tull et al. (1972).
Transition | ||||
0.383(-1) | 0.418(-1) | 0.404(-1) | 0.120 | |
0.39(-1) | 0.39(-1) | 0.39(-1) | 0.118 | |
0.355(-2) | 0.364(-2) | 0.363(-2) | 0.108(-1) | |
- | - | - | 0.105(+1) | |
0.101(-2) | 0.101(-2) | 0.102(-2) | 0.304(-2) | |
- | - | - | 0.293(-2) | |
0.370 | 0.403 | 0.390 | 0.116(+1) | |
0.387 | 0.387 | 0.387 | 0.116(+1) | |
0.300(-1) | 0.306(-1) | 0.306(-1) | 0.912(-1) | |
0.30(-1) | 0.30(-1) | 0.30(-1) | 0.899(-1) | |
0.211(+1) | 0.231(+1) | 0.222(+1) | 0.663(+1) | |
0.221(+1) | 0.221(+1) | 0.221(+1) | 0.663(+1) |
See footnotes in Table 1. |
The relativistic quantum defect orbitals are determined by solving
analytically the quasi-relativistic scalar
second-order Dirac-like equation,
obtained after decoupling the radial,
two-component Dirac equation, through a non-unitary transformation.
(1) |
(2) |
(3) |
(4) |
Our methodology supplies one-electron radial wavefunctions, characterized by the n, l and j quantum numbers
(Martín & Karwowski 1991), that we employ in the transition matrix elements for the initial
and final states of the active electron. These correspond to levels of a given L, S and J symmetry in
many-electron atoms. We take care of the presence of the remaining electrons by including the appropriate angular
factors in the line strengths. Thus, the electric quadrupole line strength for a transition between two states, is
given by the equation
(5) |
The relationships between the line strength S (in atomic units,
),
the oscillator strength f (dimensionless), and the transition probability A (in
)
are given by
(6) |
(7) |
Transition | ||||
0.207 | 0.608(-1) | 0.365 | 0.633 | |
0.201 | 0.57(-1) | 0.345 | 0.603 | |
0.684(-2) | 0.186(-2) | 0.112(-1) | 0.199(-1) | |
- | - | 0.12(-1) | 0.208(-1) | |
0.717(-3) | 0.180(-3) | 0.109(-2) | 0.199(-2) | |
- | - | - | 0.233(-2) | |
0.121(-3) | 0.271(-4) | 0.165(-3) | 0.313(-3) | |
- | - | - | 0.430(-3) | |
0.245(-4) | 0.445(-5) | 0.256(-4) | 0.545(-4) | |
- | - | - | 0.102(-3) | |
0.104(+1) | 0.298 | 0.179(+1) | 0.313(+1) | |
0.105(+1) | 0.300 | 0.180(+1) | 0.315(+1) | |
0.141(+1) | 0.416 | 0.250(+1) | 0.432(+1) | |
0.138(+1) | 0.394 | 0.237(+1) | 0.414(+1) | |
0.982(-1) | 0.277(-1) | 0.167 | 0.293 | |
0.95(-1) | 0.27(-1) | 0.163 | 0.285 | |
0.195(-1) | 0.537(-2) | 0.323(-1) | 0.572(-1) | |
0.19(-1) | - | 0.32(-1) | 0.564(-1) | |
0.629(-2) | 0.169(-2) | 0.101(-1) | 0.181(-1) | |
- | - | 0.10(-1) | 0.182(-1) |
Transition | ||||
0.100(+2) | 0.286(+1) | 0.172(+2) | 0.301(+2) | |
0.100(+2) | 0.287(+1) | 0.172(+2) | 0.301(+2) | |
0.602(+1) | 0.179(+1) | 0.107(+2) | 0.185(+2) | |
0.60(+1) | 0.170(+1) | 0.102(+2) | 0.179(+2) | |
0.509 | 0.145 | 0.873 | 0.153(+1) | |
0.493 | 0.141 | 0.85 | 0.148(+1) | |
0.115 | 0.322(-1) | 0.192 | 0.339 | |
0.110 | 0.32(-1) | 0.189 | 0.331 | |
0.528(+2) | 0.151(+2) | 0.908(+2) | 0.159(+3) | |
0.53(+2) | 0.15(+2) | 0.91(+2) | 0.159(+3) | |
0.198(+2) | 0.593(+1) | 0.356(+2) | 0.613(+2) | |
0.199(+2) | 0.57(+1) | 0.341(+2) | 0.597(+2) | |
0.181(+1) | 0.520 | 0.312(+1) | 0.545(+1) | |
0.176(+1) | 0.50 | 0.301(+1) | 0.527(+1) |
See footnotes in Table 1. |
The total line strength of the multiplet is equal to the sum of the line strengths of all the multiplet lines
(8) |
Copyright The European Southern Observatory (ESO)