next previous
Up: Optical spectroscopy of galaxies cluster


2 Observations and data reduction

Galaxies in the present study were primarily selected among the objects brighter than $B_{\rm T}\leq17.0$ in the VCC Catalogue of Virgo Cluster galaxies by Binggeli et al. (1985). CGCG (Zwicky et al. 1961-68) galaxies in the region $11^{\rm h}30^{\rm m}<\alpha<13^{\rm h}30^{\rm m}; 18^{\circ}<\delta<32^{\circ}$, containing the Coma-A1367 supercluster, were also selected as filler objects. Long-slit, low dispersion spectra of 76 galaxies were obtained in several observing runs since 1999 using the imaging spectrographs BFOSC and LFOSC attached to the Cassini 1.5 m telescope at Loiano (Italy), to the 2.1 m telescope of the Guillermo Haro Observatory at Cananea (Mexico), respectively, and with the CARELEC spectrograph (Lemaitre et al. 1990) attached to the 1.92 m telescope of the Observatoire de Haute Provence (OHP) (France).

Table 1 lists the characteristics of the instrumentation in the adopted set-up.

  \begin{figure}
{
\psfig{figure=DS1893.f2.ps,width=12truecm,height=13truecm} }
\end{figure} Figure 2: The distribution in celestial coordinates of 913 Virgo galaxies with $V\leq 24\, 000$  $\rm km~ s^{-1}$(right) and a wedge diagram (left) (same symbols as in Fig. 1)


  \begin{figure}
{
\psfig{figure=DS1893.f3.ps,width=10truecm,height=13truecm} }
\end{figure} Figure 3: The distribution in celestial coordinates of 1109 galaxies in the direction of the Coma supercluster with measured redshift (top) and a wedge diagram (bottom) (same symbols as in Fig. 1)


 

 
Table 2: Parameters of the observed Virgo galaxies
Gal. RA(1950) Dec. (1950) Type $B_{\rm T}$ V $\pm$ Lines Run Memb new Memb $v_{\rm alt}$ ref
   h m s   $^{\rm o}~'~''$   mag km s-1              
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (10a) (11) (12)
VCC 0007 120645.60 114230.0 Sc 15.04 18675 425 A Can bk bk    
VCC 0014 120717.80 113205.0 BCD? 16.50 17891 35 E L00 - bk    
VCC 0019 120740.80 132800.0 BCD? 16.50 6803 99 E L00 - bk    
VCC 0045 120934.70 152315.0 BCD? 16.00 15236 36 E L00 - bk    
VCC 0064 121008.50 114955.0 Sab 15.04 18142 336 A Can bk bk    
VCC 0074 121031.80 161024.0 BCD? 16.30 861 78 E Can - m    
VCC 0099 121128.90 70004.0 Sa? 14.81 2476 214 E L99 - m 2444 GGH98
VCC 0196 121400.00 94624.0 BCD? 16.50 13024 57 E L00 - bk    
VCC 0225 121439.00 83612.0 BCD? 17.00 21345 126 E L00 - bk    
VCC 0249 121509.00 133930.0 Sa 14.61 7491 61 E Can bk bk    
VCC 0323 121633.20 60012.0 Sa 14.91 2402 358 A L99 - m 2756 GGH98
VCC 0362 121709.00 54856.0 Sa 14.51 1300 304 A L99 - m 1536 GGH98
VCC 0397 121739.00 65402.0 dE? 15.00 2411 809 A L99 - m 2495 GGH98
VCC 0482 121900.80 50324.0 S0a 14.77 1802 709 A L99 - m 2170 GGH98
VCC 0486 121903.80 60235.0 S0a 14.50 2386 252 A L99 - m 2498 GGH98
VCC 0510 121922.80 155518.0 dE 15.13 804 151 A Can m m    
VCC 0541 121945.00 43348.0 BCD 16.00 23511 50 E L00 - bk    
VCC 0573 122009.60 55454.0 Sc 15.20 23083 189 E Can bk bk 23083 NED
VCC 0583 122014.40 154636.0 Im 15.76 -72 475 A L99 m m    
VCC 0723 122149.80 131824.0 dS0? 15.04 125 50 A L00 - m    
VCC 0762 122230.00 74660.0 dE 15.30 1341 211 A Ohp m m    
VCC 0794 122250.40 164224.0 dS0 15.50 918 817 A Ohp m m    
VCC 0817 122306.00 160642.0 dE 15.00 1168 153 A Can m m    
VCC 0991 122445.90 142525.0 dE 14.70 -406 239 A L99 m m    
VCC 1028 122506.60 144360.0 dS0? 15.70 21 158 A Ohp - m    
VCC 1174 122645.80 101246.0 BCD? 15.50 11840 52 E L99 - bk    
VCC 1270 122743.80 84800.0 Sa 15.00 11687 440 A Can bk bk    
VCC 1304 122809.00 152412.0 dS0 15.50 -108 294 A L99 m m    
VCC 1389 122919.80 124530.0 dE 15.91 936 193 A Can m m    
VCC 1395 122923.40 85248.0 dE? 16.20 22900 100 E L00 - bk    
VCC 1423 122942.60 31630.0 BCD? 16.00 13079 98 A Can - bk    
VCC 1608 123247.60 62325.0 E 14.20 2285 193 A L99 - m 2464 GGH98
VCC 1643 123321.00 60212.0 S0 15.20 12509 258 A Ohp - bk 12563 GGH98
VCC 1671 123359.60 62641.0 dS0 14.80 11608 809 A L99 - bk 11846 GGH98
VCC 1687 123416.20 42242.0 dE 15.10 616 122 A Can - m    
VCC 1836 123749.80 145930.0 dS0 14.54 1927 148 A Can m m    
VCC 1849 123803.60 94942.0 BCD? 16.20 15905 50 E L00 - bk    
VCC 1906 123932.20 155438.0 S0 15.70 314 138 A Can - m    
VCC 1927 124005.40 105024.0 Sc 14.91 20085 180 A Can bk bk    
VCC 1936 124014.40 94654.0 dS0 15.68 985 276 A Ohp m m    
VCC 1947 124023.30 35701.0 dE 14.56 1083 405 A L99 - m 944 GGH98
VCC 1956 124036.00 35118.0 S.. 15.10 14691 51 E L99 - bk 14659 GGH98
VCC 1982 124119.20 114412.0 dE 15.30 938 464 A Ohp m m    
VCC 1997 124151.60 102742.0 Sb 15.10 9210 46 E Can bk bk    
VCC 2015 124240.20 103554.0 BCD? 16.20 2545 115 E L00 - m    
VCC 2042 124407.20 93448.0 dE 14.84 1765 154 A Can m m    
VCC 2077 124604.50 110851.0 Sab 15.20 11860 225 A Can bk bk    
VCC 2082 124727.60 113206.0 S.. 15.30 7421 26 E Can bk bk    



 

 
Table 3: Parameters of the observed Coma galaxies
Gal. RA(1950) Dec. (1950) Type $B_{\rm T}$ V $\pm$ Lines Run Memb $v_{\rm alt}$ ref
   h m s   $^{\rm o}~'~''$   mag km s-1            
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10a) (11) (12)
127-028 113851.25 250457.3 S0 15.60 3518 330 A L99 fg    
127-029N 113859.62 260956.6 E 16.30 7407 14 E Can m    
127-029S 113900.06 260926.5 E 16.30 6927 113 A Can m    
97-153W 114513.24 184955.0 S.. 16.30 11156 20 E Can bk    
97-153E 114515.08 184936.7 S.. 16.30 20261 112 E Can bk    
127-057S 114550.62 260223.9 S.. 16.50 13666 75 E Can bk    
127-057N 114551.69 260251.3 S.. 16.50 13718 15 E Can bk    
127-102 115130.07 232813.1 E 15.70 7799 139 A Ohp m    
128-028W 120405.12 260142.4 E 16.40 7353 198 A Can m    
128-028E 120406.94 260150.2 E 16.40 13788 143 A Can bk    
98-088 120903.25 201024.8 S0 15.70 6564 215 A Ohp m    
128-055 121122.87 220200.8 S0 15.70 7227 330 A L99 m    
98-120 121341.37 194405.9 E 15.70 13208 202 A Ohp bk    
98-127 121409.85 183918.2 E 15.70 8954 203 A Ohp bk    
99-013 121638.07 193306.1 Sc 15.70 7297 16 E Ohp m    
128-083 121936.55 240846.0 E 15.70 10182 129 E Ohp bk    
128-083E 121939.64 240847.5 E 17.00 10292 164 A Ohp bk    
128-085 122150.98 212612.2 Sc 15.60 914 21 E Ohp fg    
99-066 122620.69 194525.9 Sb 15.70 13582 86 E Ohp bk    
129-003 122631.44 245429.9 Sc 15.70 14572 9 E Ohp bk    
99-067 122635.25 191652.4 E 15.70 14393 250 A Ohp bk    
159-087E 124810.87 274149.8 Sbc 15.70 12286 16 E Ohp bk    
160-036S 125435.00 305820.9 S0 16.00 15302 177 A Can bk    
160-036E 125438.62 305831.5 E 16.50 14880 185 A Can bk    
160-163S 131035.69 272401.1 E 16.50 17929 178 A Can bk    
160-163 131036.56 272421.7 S0a 15.70 18015 72 E Can bk    
161-029 131912.70 263359.0 Sb 15.70 4930 11 E Ohp m    
161-061S 132554.00 285542.1 S.. 15.60 11281 32 E Can bk 11247 G99
161-061N 132554.69 285657.4 E 16.50 10564 165 A Can bk    


The observations at Loiano were performed using a 2.0 or 2.5 arcsec slit, depending on the seeing conditions, generally oriented E-W. Every galaxy spectrum was preceded and followed by an exposure of a HeAr lamp to secure the wavelength calibration. The exposure time ranged between 20 and 90 min (1999 run) according to the brightness of the target objects, or 15 min (2000 run) owed to the much higher quantum efficiency of the new EEV detector.

The observations at Cananea were carried out with a 1.9 arcsec slit, generally oriented N-S. Every galaxy spectrum was preceded and followed by an exposure of a XeNe lamp to secure the wavelength calibration. The exposure time ranged between 20 and 40 min according to the brightness of the target objects.

The observations at OHP were carried out with a 2.5 arcsec fixed slit, generally oriented E-W. Every galaxy spectrum was preceded and followed by an exposure of a HeAr lamp to secure the wavelength calibration. The exposure time ranged between 20 and 30 min according to the brightness of the target objects. In all runs the observations were obtained in nearly photometric conditions, with thin cirrus. The orientation of the slit was modified from the set-up given above when two adiacent objects were observable in the same exposure.

The data reduction was performed in the IRAF-PROS environment. After bias subtraction, when 3 or more frames of the same target were obtained, these were combined (after spatial alignment) using a median filter to help cosmic rays removal. Otherwise the cosmic rays were removed under visual inspection. The wavelength calibration was checked on known sky lines. These were found within $\sim$ 1 $\rm\AA$ from their nominal value, providing an estimate of the systematic uncertainty on the derived velocities of $\sim$ 50 $\rm km~ s^{-1}$. After subtraction of the sky background, one-dimensional spectra were extracted from the frames. These spectra were analyzed with either of two methods:
1) individual line measurement: all spectra taken at Loiano 2000 were inspected and emission/absorption lines were identified. Emission lines include H$\alpha $, [NII] and [SII]. Absorption lines include the MgI, Ca-Fe and Na. The galaxy redshift was obtained from these individual measurements. If more than one line was identified, the galaxy redshift was derived as the weighted mean of the individual measurements, with weights proportional to the line intensities;
2) cross correlation technique: spectra obtained in all the remaining runs were analyzed using the cross-correlation technique of Tonry & Davis (1979). This method is based on a "comparison" between the spectrum of a galaxy whose redshift is to be determined, and a fiducial spectral template of a galaxy (or star) of appropriate spectral type to contain the wanted absorption/emission lines. The basic assumption behind this method is that the spectrum of a galaxy is well approximated by the spectrum of its stars, modified by the effects of the stellar motions inside the galaxy and by the systemic redshift. For this purpose high signal-to-noise spectra were taken of four template galaxies: M 105 and M 32 (absorption lines) and VCC 1554 and IC 342 (emission lines), which were converted to the restframe $\lambda$. The observed redshifts ( $V_{\rm obs}$) were not transformed to Heliocentric.


next previous
Up: Optical spectroscopy of galaxies cluster

Copyright The European Southern Observatory (ESO)