next previous
Up: Atomic data from the


2 Method


 

 
Table 1: The $\lambda $ parameters for Fe XXI
$n\ell$ $\lambda_{n\ell}$ $n\ell$ $\lambda_{n\ell}$
1s 1.43161 3s 1.28949
2s 1.43035 3p 1.23930
2p 1.34480 3d 1.37441


The method is described in detail in the first paper in the series (Hummer et al. [1993]). A brief summary is provided here together with data relevant to the assessment of the accuracy of the present calculation.

The electron + target scattering problem was solved using the close-coupling method in a Breit-Pauli approximation. The configuration interaction target wavefunctions were obtained using the program SUPERSTRUCTURE (Eissner et al. [1974]) in a version due to Nussbaumer & Storey ([1978]). The latter provides for more flexibility in the wavefunctions through the possible use of Coulomb functions and individual free parameters for the one-electron orbitals. The present target incorporated the following configurations:

2s22p2 2s2p3 2p4
2s22p3s 2s22p3p 2s22p3d
2s2p23s 2s2p23p 2s2p23d
2p33s 2p33p 2p33d

although only the first six configurations and a few of the 2s2p23s states that are energetically lower than the higher lying 2s22p3d levels appear explicitly in the current computation. This leads to a 28-term LS-coupling and a 52-level intermediate coupling target. Of course, the neglect of the other configurations has consequences for the accuracy to be expected.


  \begin{figure}\par\psfig{figure=ds1841f1.ps,width=8.8cm,angle=-90}\end{figure} Figure 1: Comparison of the f-values obtained in the present Fe XXI target calculation with those of Aggarwal et al. ([1997])


 

 
Table 2: Calculated versus observed (Corliss & Sugar [1982]) target energies (cm-1)
Index Term $E_{{\rm calc}}$ $E_{{\rm obs}}$
1 2s22p2 3P $^{\rm e}_0$ 0 0.0
2 2s22p2 3P $^{\rm e}_1$ 82342 73850
3 2s22p2 3P $^{\rm e}_2$ 131240 117353
4 2s22p2 1D $^{\rm e}_2$ 266159 244560
5 2s22p2 1P $^{\rm e}_0$ 392420 371900
6 2s2p3 5S$^\circ _2$ 492100 486950
7 2s2p3 3D$^\circ _1$ 788117 776780
8 2s2p3 3D$^\circ _2$ 790592 777350
9 2s2p3 3D$^\circ _3$ 824580 803930
10 2s2p3 3P$^\circ_0$ 933542 916380
11 2s2p3 3P$^\circ _1$ 945013 924880
12 2s2p3 3P$^\circ _2$ 966608 942320
13 2s2p3 3S$^\circ _1$ 1115277 1095600
14 2s2p3 1D$^\circ _2$ 1156183 1126800
15 2s2p3 1P$^\circ _1$ 1293363 1261000
16 2p4 3P $^{\rm e}_2$ 1667455 1646300
17 2p4 3P $^{\rm e}_0$ 1761165 1735700
18 2p4 3P $^{\rm e}_1$ 1770134 1740500
19 2p4 1D $^{\rm e}_2$ 1853211 1817300
20 2p4 1S $^{\rm e}_0$ 2091087 2048200
21 2s22p3s 3P$^\circ_0$ 7687260  
22 2s22p3s 3P$^\circ _1$ 7696818  
23 2s22p3s 3P$^\circ _2$ 7811152  
24 2s22p3s 1P$^\circ _1$ 7836056  
25 2s22p3p 3D $^{\rm e}_1$ 7864901  
26 2s22p3p 3P $^{\rm e}_1$ 7922276  
27 2s22p3p 3D $^{\rm e}_2$ 7926976  
28 2s22p3p 3P $^{\rm e}_0$ 7937875  
29 2s22p3p 1P $^{\rm e}_1$ 8012716  
30 2s22p3p 3D $^{\rm e}_3$ 8025472  
31 2s22p3p 3S $^{\rm e}_1$ 8034786  
32 2s22p3p 1D $^{\rm e}_2$ 8037228  
33 2s2p23s 5P $^{\rm e}_1$ 8094750  
34 2s22p3p 3P $^{\rm e}_2$ 8101009  
35 2s22p3d 3F$^\circ _2$ 8103486  
36 2s22p3d 3F$^\circ _3$ 8143904 8101400
37 2s22p3d 1D$^\circ _2$ 8149622 8098000
38 2s2p23s 5P $^{\rm e}_2$ 8150261  
39 2s22p3p 1S $^{\rm e}_0$ 8157038  
40 2s22p3d 3D$^\circ _1$ 8166771  
41 2s2p23s 3P $^{\rm e}_0$ 8204657  
42 2s2p23s 5P $^{\rm e}_3$ 8205472  
43 2s22p3d 3F$^\circ_4$ 8235261  
44 2s22p3d 3D$^\circ _2$ 8241715 8187400
45 2s2p23s 3P $^{\rm e}_1$ 8244042  
46 2s22p3d 3D$^\circ _3$ 8264769 8195000
47 2s22p3d 3P$^\circ _1$ 8275594  
48 2s22p3d 3P$^\circ _2$ 8279138 8230900
49 2s22p3d 3P$^\circ_0$ 8284450  
50 2s2p23s 3P $^{\rm e}_2$ 8302380  
51 2s22p3d 1F$^\circ _3$ 8338459 8313600
52 2s22p3d 1P$^\circ _1$ 8339760 8293900



 

 
Table 4: Transition probabilities for 2s22p2 - 2s2p3lines from this work and that of Froese Fischer & Saha ([1985])
Upper Lower This work FFS
5S$^\circ _2$ 3P $^{\rm e}_1$ 4.210E+07 3.560E+07
5S$^\circ _2$ 3P $^{\rm e}_2$ 3.625E+07 3.272E+07
5S$^\circ _2$ 1D $^{\rm e}_2$ 1.343E+06 8.548E+05
3D$^\circ _1$ 3P $^{\rm e}_0$ 1.257E+10 1.191E+10
3D$^\circ _1$ 3P $^{\rm e}_1$ 6.485E+08 7.490E+08
3D$^\circ _1$ 3P $^{\rm e}_2$ 1.027E+08 6.727E+07
3D$^\circ _1$ 1D $^{\rm e}_2$ 2.000E+08 1.869E+08
3D$^\circ _1$ 1P $^{\rm e}_0$ 4.293E+07 4.191E+07
3D$^\circ _2$ 3P $^{\rm e}_1$ 9.636E+09 9.498E+09
3D$^\circ _2$ 3P $^{\rm e}_2$ 2.035E+07 5.570E+06
3D$^\circ _2$ 1D $^{\rm e}_2$ 3.841E+07 3.612E+07
3D$^\circ _3$ 3P $^{\rm e}_2$ 6.275E+09 6.472E+09
3D$^\circ _3$ 1D $^{\rm e}_2$ 1.060E+09 7.912E+08
3P$^\circ_0$ 3P $^{\rm e}_1$ 2.309E+10 2.254E+10
3P$^\circ _1$ 3P $^{\rm e}_0$ 4.301E+09 4.248E+09
3P$^\circ _1$ 3P $^{\rm e}_1$ 1.770E+10 1.642E+10
3P$^\circ _1$ 3P $^{\rm e}_2$ 2.515E+09 2.838E+09
3P$^\circ _1$ 1D $^{\rm e}_2$ 2.316E+08 1.959E+08
3P$^\circ _1$ 1P $^{\rm e}_0$ 1.640E+08 1.509E+08
3P$^\circ _2$ 3P $^{\rm e}_1$ 2.968E+08 3.791E+08
3P$^\circ _2$ 3P $^{\rm e}_2$ 2.177E+10 2.078E+10
3P$^\circ _2$ 1D $^{\rm e}_2$ 1.335E+08 5.708E+07
3S$^\circ _1$ 3P $^{\rm e}_0$ 9.560E+09 9.311E+09
3S$^\circ _1$ 3P $^{\rm e}_1$ 2.547E+10 2.538E+10
3S$^\circ _1$ 3P $^{\rm e}_2$ 6.306E+10 5.799E+10
3S$^\circ _1$ 1D $^{\rm e}_2$ 4.072E+08 9.426E+07
3S$^\circ _1$ 1P $^{\rm e}_0$ 7.092E+08 6.489E+08
1D$^\circ _2$ 3P $^{\rm e}_1$ 4.658E+08 3.953E+08
1D$^\circ _2$ 3P $^{\rm e}_2$ 8.651E+09 6.413E+09
1D$^\circ _2$ 1D $^{\rm e}_2$ 4.602E+10 4.626E+10
1P$^\circ _1$ 3P $^{\rm e}_0$ 2.943E+07 3.573E+07
1P$^\circ _1$ 3P $^{\rm e}_1$ 5.294E+09 5.963E+09
1P$^\circ _1$ 1D $^{\rm e}_2$ 6.888E+10 6.641E+10
1P$^\circ _1$ 1P $^{\rm e}_0$ 1.799E+10 1.753E+10


All orbitals have been made spectroscopic to avoid possible problems with pseudoresonances. The free parameters in the Thomas-Fermi-Dirac-Amaldi potential, $\lambda_{n\ell}$, obtained on minimizing the weighted sum of all the target energies are given in Table 1 while the calculated energies are compared with those observed (Corliss & Sugar [1982]) in Table 2. The energies are in some cases not as accurate as those obtained by Mason et al. ([1979]) or Aggarwal ([1991]) as no correlation configurations have been included while many more spectroscopic states have been incorporated.

The calculated oscillator strengths may also indicate the quality of the target wavefunctions. In Fig. 1 we compare oscillator strengths in the length approximation with those of Aggarwal et al. ([1997]) who used the CIV3 configuration-interaction program of Hibbert ([1975]). The figure clearly demonstrates that there are no major inconsistencies between the two datasets and that the overall agreement is excellent. This is in sharp contrast to the earlier f-values of Bhatia et al. ([1987]) who also used SUPERSTRUCTURE.

Froese Fischer & Saha ([1985]) performed detailed MCHF (Froese Fischer & Saha [1983]) calculations of the 2s22p2 - 2s2p3 transition probabilities for C-like ions. We compare these results with ours in Table 4. Again the overall agreement is excellent. It should be borne in mind that our energy levels are worst for these configurations so that the target as a whole is better than this comparison would indicate. The data on which Fig. 1 is based are tabulated in Table 3 which is only available in electronic form.

These target wavefunctions were then used to perform an R-matrix close-coupling calculation to determine the scattering states of the N+1electron system. An R-matrix package due to Eissner (unpublished) was used for this purpose. The asymptotic solutions, in particular the scattering matrices and consequently the collision strengths, were then obtained using the standard program suite described by Hummer et al. ([1993]). The use of 18 continuum orbitals in the scattering problem for each $\ell$ value leads to matrices of order 4500 and approximately 220 channels for each $J\pi$combination.

To ensure convergence in the total angular momentum values of J up to 59/2 were obtained. This is more than sufficient for the majority of transitions but for the allowed transitions and a few $J\rightarrow J$ among the n=2levels the values so obtained had to be "topped-up'' to account for the infinity of J values omitted from the summation. For the allowed transitions an implementation of the Coulomb-Bethe approximation due to Eissner (Eissner et al. [1999]) and based on the top-up procedure of Burke & Seaton ([1986]) for LS-coupling was available. For the slowly converging forbidden transitions a simple geometric progression was assumed but see the following section for further discussion of this point. The collision rates or effective collision strengths were obtained by integrating the collision strengths in the manner suggested by Burgess & Tully ([1992]) to ensure the proper behaviour at low temperatures.

Finally, the maximum total energy of 260 Ryd was insufficient to provide converged results at the highest temperatures so that the present results had to be extrapolated to higher energies. Here we have simply assumed the collision strength to be constant. Of course, this is not a good approximation but at 107K this high-energy correction is never more than 10% of the total for any given cross section and hence the error is well within the bounds of other systematic errors. It does, however, mean that the present results should not be extrapolated to higher temperatures without paying careful attention to this point. Since the present results cover the maximum of the Fe20+ ionization balance determined by Arnaud & Rothenflug ([1985]), this should not be necessary.


  \begin{figure}\par\psfig{figure=ds1841f2.ps,width=8.8cm,angle=-90}\end{figure} Figure 2: The 2s22p2 3P $^{\rm e}_2\,-\,2$s2p3 3D$^\circ _3$collision strength with (filled circles) and without (x) top-up. Note that the data with top-up converge to the correct limit


  \begin{figure}\par\psfig{figure=ds1841f3.ps,width=8.8cm,angle=-90}\end{figure} Figure 3: The 2s22p2 3P $^{\rm e}_1 \,-\, ^3$P $^{\rm e}_2$collision strength at low energies. Comparison with Aggarwal's ([1991]) Fig. 1 shows good agreement with a cross section obtained in a Dirac approximation


  \begin{figure}\par\psfig{figure=ds1841f4.ps,width=8.8cm,angle=-90}\end{figure} Figure 4: The 2s22p2 3P $^{\rm e}_1 \,-\, ^3$P $^{\rm e}_2$collision strength at high energies. These resonances do not appear in the Aggarwal ([1991]) calculation


  \begin{figure}\par\psfig{figure=ds1841f5.ps,width=8.8cm,angle=-90}\end{figure} Figure 5: The 2s22p2 1D $^{\rm e}_2$ - 2s2p3 3D$^\circ _2$collision strength at low energies. Comparison with Aggarwal's ([1991]) Fig. 2 shows good agreement with a cross section obtained in a Dirac approximation


  \begin{figure}\par\psfig{figure=ds1841f6.ps,width=8.8cm,angle=-90}\end{figure} Figure 6: The 2s22p2 1D $^{\rm e}_2\,-\,2$s2p3 3D$^\circ _2$collision strength at high energies. These resonances have been omitted from the Aggarwal ([1991]) calculation


  \begin{figure}\par\psfig{figure=ds1841f7.ps,width=8.8cm,angle=-90}\end{figure} Figure 7: The individual J contributions to the 2s22p2 3P $^{\rm e}_0$ - 2s2p3 5S$^\circ _2$ forbidden transition at an energy of 118 Ryd. The convergence is rapid


   \begin{figure}\par\psfig{figure=ds1841f8.ps,width=8.8cm,angle=-90}\end{figure} Figure 8: The individual J contributions to the 2s22p2 3P $^{\rm e}_0 \,-\, 2$s2p3 3D$^\circ _1$ allowed transition at an energy of 118 Ryd. Note the long tail and corresponding slow convergence


  \begin{figure}\par\psfig{figure=ds1841f9.ps,width=8.8cm,angle=-90}\end{figure} Figure 9: The individual J contributions to the 2s2p3 5S $^\circ _2 - 2$s2p3 3P$^\circ _2$ forbidden transition at an energy of 118 Ryd. The convergence is slow (compare with Fig. 7)


  \begin{figure}\par\psfig{figure=ds1841f10.ps,width=8.8cm,angle=-90}\end{figure} Figure 10: The effective collision strength plotted as a function of temperature for the 2s22p2 3P $^{\rm e}_0 \,-\, $2s2 2p21D $^{\rm e}_2$ forbidden transition. The solid curve are the present results, dashed are from Aggarwal ([1991]). The contribution of the higher lying resonances is apparent


  \begin{figure}\par\psfig{figure=ds1841f11.ps,width=8.8cm,angle=-90}\end{figure} Figure 11: Collision strengths from the present work compared with those of Zhang & Sampson ([1996]) at an ejected electron energy of 95.3 Ryd


   \begin{figure}\par\psfig{figure=ds1841f12.ps,width=8.8cm,angle=-90}\end{figure} Figure 12: Collision strengths from the present work compared with those of Zhang & Sampson ([1997]) at an ejected electron energy of 57.2 Ryd


next previous
Up: Atomic data from the

Copyright The European Southern Observatory (ESO)