next previous
Up: The Vienna-KPNO search for


Subsections

4 Results

4.1 New H&K emission-line stars and absolute surface fluxes

Absolute H&K emission-line fluxes are determined with the method of Linsky et al. ([1979]). It includes the measurement of the relative flux in a 50-Å band, f50, between 3925 and 3975 Å and the relative flux in the H and K emission lines, $f_{\rm H}$ and $f_{\rm K}$, as defined by the (H&K)$_{\rm 1V}$ and (H&K)$_{\rm 1R}$ points, respectively. All relative fluxes are obtained by integrating the appropriate bandpass between the unnormalized spectrum and zero intensity.

The absolute emission line fluxes, ${\cal F}$, are calculated by comparing the ratio of the relative H&K-line flux and the relative 50-Å flux with a linear extrapolation of the absolute flux from the V-R color index relation given by Linsky et al. ([1979]) and Strassmeier et al. ([1994]) and based upon the absolute photometry of Willstrop ([1964]):

 
$\displaystyle \log {\cal F}_{50}$ = $\displaystyle 8.264 - 3.076 \ (V-R)_{\rm J}$ (1)
$\displaystyle {\cal F}_{\rm H}$ = $\displaystyle \frac{f_{\rm H}}{f_{50}} \ ( 50 \ {\cal F}_{50} )$ (2)
$\displaystyle {\cal F}_{\rm K}$ = $\displaystyle \frac{f_{\rm K}}{f_{50}} \ ( 50 \ {\cal F}_{50} ) \ .$ (3)

Table A1 enumerates the results of this analysis and Table 1 is a quick-look summary of the stars with H&K emission lines. In Table A1, Col. 1 lists the targets by HD number or, if unavailable, by Hipparcos number, as well as an eventual variable star name. Column 3 is the spectral classification taken from the Hipparcos-catalogue Appendix, and Col. 6 the trigonometric parallax from Hipparcos. Column 10 denotes the particular value of Johnson (V-R) used in Eq. (1) to transform the relative flux ratio to the absolute flux. Note that the V-R colors listed are not observed values but were computed from the observed Hipparcos B-V color, the deduced absolute visual brightness, and the color-color relation tabulated in Gray ([1992]). Using B-V instead of an observed V-R value minimizes the effects of cool starspots and was shown by many authors (e.g. Strassmeier et al. [1994]) to be a more consistent description of the unspotted photosphere. Columns 18 and 19 list the absolute H&K emission-line fluxes and Cols. 20 and 21 the pure chromospheric fluxes. These fluxes were corrected for the photospheric contribution by subtracting the flux from a radiative equilibrium atmosphere, ${\cal F}^{\rm RE}_{\rm H\&K}$, given in Linsky et al. ([1979]) and represent the purely chromospheric emission flux, ${\cal F}'_{\rm H\&K}$:

\begin{displaymath}{\cal F}'_{\rm H\&K} = {\cal F}^{\rm obs}_{\rm H\&K} -
{\cal F}^{\rm RE}_{\rm H\&K} \ .
\end{displaymath} (4)

These fluxes may be compared with the fluxes for the non-emission stars in Table A2 as well as with the basal fluxes from Rutten et al. ([1991]), which are believed to be due to acoustic heating of the chromosphere. The remaining flux difference for a given spectral type is then presumably of magnetic origin. For historical reasons, we add a column, $I_{\rm K}$, to Table A1 (Col. 11) that lists the Ca II K emission-line strengths according to Wilson's ([1976]) 0-5 scale; 0 denotes no detectable emission, and 5 marks strong emission lines reaching the nearby continuum or above. Figure B1 in the Appendix are Ca II plots of all stars with H and K emission stronger than $I_{\rm K}\geq 1$. Furthermore, we compute the sum of the corrected fluxes in the H and K line and express it in units of the bolometric luminosity (Col. 22):

\begin{displaymath}R_{\rm HK} =
\frac{{\cal F}'_{\rm H} + {\cal F}'_{\rm K}}{\sigma \ T_{\rm eff}^4} \ .
\end{displaymath} (5)

Fourteen stars had even H$\epsilon$ in emission and we measured their absolute emission-line fluxes as well. These stars and their logarithmic H$\epsilon$ emission-line fluxes in parenthesis in ergcm-2 s-1 are: HD 553 (5.68), HIP 999 (6.57), HD 82286 (5.83), HD 95559 (6.03), HD 106855 (6.17), HD 127068 (5.92), HD 113816 (5.75), HIP 43422 (6.39), HIP 46634 (5.91), HIP 63322 (5.92), HD 145230 (5.85), HD 175742 (6.44), HD 178450 (6.52), and HD 218738 (6.43). The Ca II emission in the spectrum of HD 127068ab can not be unambiguously assigned to one of the two components. The two different entries for the emission strength of HD 141272 are real and indicate relatively large variations of the emission-line strength. The possible triple-lined system HD 139691 (=HIP 76563; see later in Sect. 4.5) has weaker emission than the usual inclusion limit for entries in Table A1 and we list it as a non-emission star in Table A2. Also note that its spectral-type entry in the Hipparcos/Tycho catalog reads F5 while the B-V entry is +1.7 $\pm$ 0.5. This indicates a composite spectrum.

Table A2 lists the results for the stars without detectable H&K emission lines (Table 2 is a summary of their most commonly used identifications). Fluxes for these stars are determined from a 1-Å band centered at the rest wavelengths of Ca II H&K, respectively. Otherwise the procedure is similar as for the emission-line stars except the subtraction of the photospheric contribution. We expect an accuracy of the absolute chromospheric fluxes for these stars of the order of 30-50% based on a comparison with our previous, well-exposed KPNO spectra of $\gamma$ Dor candidates (Kaye & Strassmeier [1998]).


 

 
Table 1: Stars with H&K emission (data are listed in Table A1)

HD 553
HD 691 HD 745 HD 3125A HD 4635 HD 5835 HD 5996 HD 6665 HD 6963 HD 7205
HD 7286 HD 7661 HD 7895 HD 8583 HD 8997a HD 8997b HD 9313 HD 9902b HD 9902a HD 10008
HD 12786 HD 13357B HD 13382 HD 13507 HD 13531 HD 13579A HD 14274 HD 14374 HD 15013 HD 16287
HD 16884 HD 17379 HD 17382 HD 18131 HD 18632 HD 18645 HD 18955b HD 18955a HD 19668 HD 19902
HD 19942 HD 20678 HD 21663 HD 21845 HD 23140 HD 23356 HD 23386 HD 23551 HD 24053 HD 25665
HD 25893 HD 25998 HD 26756 HD 26900 HD 27130a HD 27130b HD 27130 HD 27149a HD 27149b HD 27282
HD 27466 HD 27685 HD 27989 HD 28495 HD 29883 HD 30738 HD 31000 HD 35112 HD 37216 HD 40647
HD 40891 HD 41067 HD 41842 HD 43516 HD 43989 HD 44573 HD 45609 HD 46183 HD 46524 HD 47787
HD 50255b HD 50255a HD 51866 HD 52456 HD 53157 HD 53532 HD 53927 HD 54359 HD 54371 HD 56168
HD 59747 HD 60491 HD 61606 HD 61994a HD 61994b HD 62668 HD 64725 HD 64942 HD 65523 HD 66553
HD 69247 HD 69328 HD 69433 HD 70088 HD 70146 HD 71071 HD 71251 HD 71974 HD 72146 HD 72760
HD 73322 HD 74150 HD 75935 HD 76218 HD 76799 HD 77825 HD 78233 HD 78644 HD 79969 HD 79993
HD 80355 HD 81040 HD 81659 HD 81767 HD 82159 HD 82286a HD 82286b HD 82443 HD 82841 HD 82939
HD 82977 HD 83588 HD 83983 HD 85301 HD 86065 HD 86590a HD 86590b HD 86590c HD 87424 HD 87547
HD 87598 HD 87883 HD 87978 HD 88638 HD 88654 HD 89546 HD 89965 HD 90442 HD 91901 HD 92945
HD 93811 HD 93915 HD 93915a HD 93915b HD 94765 HD 95188 HD 95559a HD 95559b HD 95559c HD 95559
HD 95724 HD 95743 HD 96064 HD 96612 HD 97305 HD 97601 HD 98356 HD 99303 HD 100310 HD 101206
HD 101906 HD 102121 HD 102195 HD 102696 HD 103072 HD 103720 HD 103847 HD 104067 HD 104243 HD 104923
HD 105575a HD 105575b HD 105575c HD 105631 HD 105963A HD 105963B HD 106023 HD 106156 HD 106453 HD 106711
HD 106855a HD 106855b HD 108186 HD 108564 HD 108574 HD 108575 HD 108984 HD 109011a HD 109011b HD 109157
HD 109647 HD 109703 HD 110463 HD 110514 HD 110833 HD 111312 HD 111487 HD 111487a HD 111487b HD 111813
HD 112099 HD 112733 HD 112859a HD 112859b HD 113247 HD 113247a HD 113247b HD 113449 HD 113720 HD 113816
HD 116544 HD 116956 HD 117099 HD 117860 HD 118234 HD 119332 HD 119607 HD 120205 HD 120352 HD 121629
HD 121812 HD 121979 HD 122968 HD 123351 HD 124106 HD 125874 HD 126535 HD 127068a HD 127068b HD 127871
HD 128165 HD 128311 HD 130004 HD 130215 HD 130307 HD 130322 HD 131023 HD 131977 HD 132425 HD 134353
HD 136378 HD 136834 HD 137778 HD 138134 HD 138157 HD 139194 HD 139837 HD 140637 HD 141071 HD 141272
HD 141919 HD 142072 HD 142680 HD 143937a HD 143937b HD 144087 HD 144088 HD 144872 HD 145230 HD 147776
HD 147866 HD 149028 HD 149806 HD 150202 HD 150511 HD 150748 HD 152178 HD 153525 HD 153557 HD 155712
HD 155802a HD 155802b HD 158972 HD 161284 HD 163621 HD 167715 HD 168603 HD 171488 HD 172393 HD 173950
HD 175742 HD 176157 HD 178450 HD 180161 HD 180263 HD 180809 HD 181219 HD 183063 HD 183870 HD 186803
HD 189087 HD 189733 HD 190470 HD 190642 HD 192263 HD 193479 HD 196795 HD 197913Aa HD 197913Ab HD 197913B
HD 198425 HD 199967A HD 199967B HD 200560 HD 200968AB HD 201219 HD 202605 HD 203030 HD 203136 HD 205249
HD 205762 HD 206374 HD 207485 HD 207583 HD 208313 HD 208472 HD 209154 HD 209393 HD 209779 HD 210667
HD 211472 HD 214615AB HD 214683 HD 215274 HD 215555 HD 217352 HD 217580 HD 218153 HD 218738 HD 218739
HD 220182 HD 220476 HD 221851 HD 222422 HD 223154 HD 223941 HD 224983 HD 237944a HD 237944b HD 237944c
HD 258857 HD 261557 HD 263175 HD 285931 HD 291095 BH Vir a BH Vir b CG Cyg a CG Cyg b HIP 999
HIP 6339 HIP 36357 HIP 39222 HIP 40774 HIP 42253 HIP 43418 HIP 43422 HIP 43751 HIP 46634 HIP 47176
HIP 50072 HIP 50660 HIP 51197 HIP 56299 HIP 57859 HIP 58560 HIP 59152 HIP 59904 HIP 63322a HIP 63322b
HIP 63442 HIP 64059 HIP 69410 HIP 70836 HIP 75011 HIP 77179 HIP 77210a HIP 77210b HIP 78688 HIP 82042
HIP 83141 HIP 101227 SAO 150676a SAO 150676b SAO 151224a SAO 151224b        

                 



 

 
Table 2: Stars without H&K emission (data are listed in Table A2)

HD 15
HD 443 HD 471 HD 533 HD 629 HD 1036 HD 1059 HD 1153 HD 1241 HD 1350
HD 1426 HD 1449 HD 1605 HD 1624 HD 2034 HD 2622 HD 2712 HD 2805 HD 2814 HD 2816
HD 2841 HD 3141 HD 3250 HD 3400 HD 3681 HD 3765 HD 4029 HD 4372 HD 4388 HD 4449
HD 4561 HD 4744 HD 4754 HD 4770 HD 5035 HD 5279 HD 5349 HD 5747 HD 5873 HD 5897
HD 6360 HD 6448 HD 6555 HD 6645 HD 6890 HD 7018 HD 7149 HD 7234 HD 7385 HD 7444
HD 7639A HD 7864 HD 7980 HD 8016 HD 8129 HD 8275 HD 8389 HD 8508 HD 8553 HD 8561
HD 8594 HD 8654 HD 8828 HD 8910 HD 9070 HD 9304 HD 9342 HD 9556 HD 9847 HD 9938
HD 10126 HD 10145 HD 10196 HD 10304 HD 10311 HD 10743 HD 10755 HD 11286 HD 11443 HD 11707
HD 11979 HD 12051 HD 12343 HD 12661 HD 13357A HD 13783 HD 13997 HD 14204 HD 14648 HD 14787
HD 14798 HD 14855 HD 14940 HD 15014 HD 15015 HD 15096 HD 15116 HD 15299 HD 15682 HD 15734
HD 15830 HD 15851 HD 16293 HD 16366 HD 16454 HD 16559 HD 16674 HD 17190 HD 17655 HD 17673
HD 18143 HD 18175 HD 18200 HD 18916 HD 19308 HD 20165 HD 20215 HD 21774 HD 21864 HD 22233
HD 22657 HD 22854 HD 23065 HD 23439A HD 23439B HD 24206 HD 24238 HD 24316 HD 24467 HD 24485
HD 24604 HD 24782 HD 24964 HD 25242 HD 25347 HD 26004 HD 26334 HD 26397 HD 26465 HD 26633
HD 26634 HD 27040 HD 27115 HD 27126 HD 27235 HD 27275 HD 27574 HD 28115 HD 28172 HD 28185
HD 28338 HD 28488 HD 28821 HD 30385 HD 31439 HD 31452 HD 31865 HD 31867 HD 32237 HD 32547
HD 32915 HD 32935 HD 33142 HD 33725 HD 34101 HD 34153 HD 34616 HD 34623 HD 34839 HD 34909
HD 35518 HD 37008 HD 37986 HD 38313 HD 38904 HD 39169 HD 39847 HD 39855 HD 40708 HD 41017
HD 41196 HD 41241 HD 41303 HD 41483 HD 41785 HD 41788 HD 42182 HD 42250 HD 42532 HD 42568
HD 42606 HD 42891 HD 42983 HD 43050 HD 43062 HD 43147 HD 43188 HD 43259 HD 43306 HD 43710
HD 43944 HD 44199 HD 44263 HD 44420 HD 44671 HD 45140 HD 45231 HD 45350 HD 45652 HD 45762a
HD 45762b HD 46090 HD 46093 HD 46375 HD 46691 HD 47157 HD 47185 HD 47186 HD 47309 HD 47955
HD 47963 HD 48238 HD 48878 HD 49027 HD 49039 HD 49116 HD 49165 HD 49566 HD 49649 HD 49674
HD 50275 HD 50590 HD 50630 HD 50662 HD 51046 HD 52145 HD 54240 HD 54401 HD 55076 HD 55255
HD 55458 HD 55647 HD 55672 HD 55893 HD 57204 HD 57470 HD 57473 HD 57678 HD 57729 HD 57758
HD 57813 HD 57901 HD 58595 HD 58662 HD 58781 HD 58899 HD 59062 HD 59560 HD 60272 HD 60299
HD 60368 HD 61145 HD 61381 HD 62676 HD 63536 HD 64114 HD 64143 HD 64211 HD 64468 HD 64490
HD 64606 HD 64921 HD 65069 HD 65371 HD 65430 HD 65562 HD 65854 HD 66046 HD 66177 HD 66221
HD 66485 HD 66509 HD 66983 HD 67740 HD 67850 HD 67960 HD 68586 HD 68638 HD 69056 HD 69076
HD 69613 HD 70352 HD 71811 HD 71887 HD 72003 HD 72614 HD 72769 HD 72946 HD 73393 HD 73512a
HD 73512b HD 73536 HD 73667 HD 74014 HD 74377 HD 75031 HD 75073 HD 75318 HD 75697 HD 75879
HD 76294 HD 76632 HD 76752 HD 76780 HD 76844 HD 76849 HD 76909 HD 77278 HD 77338 HD 77711
HD 77712 HD 79498 HD 79581 HD 79643 HD 80131 HD 80367 HD 80448 HD 81110 HD 81438 HD 81744
HD 82460 HD 82733 HD 83804 HD 85430 HD 85916 HD 85987 HD 86661 HD 87359 HD 87680 HD 87836
HD 89023 HD 89813 HD 90107 HD 90663 HD 90711 HD 90735 HD 90812 HD 90820 HD 90932 HD 91148
HD 91299 HD 91453 HD 91527 HD 91585 HD 92048 HD 92213 HD 92320 HD 92786 HD 92788 HD 93650
HD 93800 HD 94119 HD 94164 HD 94374 HD 94718 HD 94783 HD 94880 HD 95246 HD 95848 HD 96027
HD 96460 HD 96937 HD 97004 HD 97343 HD 97658 HD 98055 HD 98078 HD 98186 HD 98281 HD 98736
HD 98839 HD 98959 HD 99994 HD 100922 HD 101227 HD 101534 HD 101728 HD 102494 HD 102800 HD 103431
HD 103432 HD 104163 HD 104782 HD 104906 HD 104988 HD 105844 HD 106495 HD 107469 HD 108849 HD 109402
HD 111285 HD 111515 HD 111978 HD 112742 HD 112758 HD 112815 HD 112914 HD 114060 HD 114125 HD 114260
HD 114783 HD 114784 HD 114823 HD 115080 HD 115153 HD 115638 HD 115755 HD 116012 HD 116056 HD 116093
HD 116442 HD 116443 HD 117635 HD 118670 HD 119585 HD 119932 HD 121129 HD 121249 HD 121320 HD 122562
HD 122676 HD 122948 HD 123265 HD 123399 HD 124292 HD 124677 HD 125056 HD 125455 HD 125920 HD 126511
HD 126532 HD 126583 HD 127352 HD 128041 HD 128356 HD 128731 HD 129674 HD 130669 HD 131509 HD 132307
HD 132756 HD 133352 HD 134043 HD 134439 HD 134440 HD 134985 HD 135725 HD 136136 HD 136274 HD 136655a
HD 136655b HD 136894 HD 138885 HD 138919 HD 139691a HD 139691b HD 139691c HD 142478 HD 143990 HD 144287
HD 144873 HD 147512 HD 149933 HD 150510 HD 150665 HD 151192 HD 151504 HD 151528 HD 151541 HD 151877
HD 152275 HD 153402 HD 154510 HD 158332 HD 159062 HD 164809 HD 164853 HD 164922 HD 164923 HD 164986
HD 165168 HD 165169 HD 165173 HD 165807 HD 166498 HD 166683 HD 167081 HD 167450 HD 167858 HD 168744
HD 168746 HD 169797 HD 169822 HD 169889 HD 170232 HD 170738 HD 171010 HD 171067 HD 171215 HD 171920
HD 172043 HD 172132 HD 172245 HD 172310 HD 172586A HD 173399 HD 173872 HD 174000 HD 174719 HD 175516
HD 175518 HD 175905 HD 176410 HD 176646 HD 176650 HD 176733 HD 177699 HD 177778 HD 178326 HD 178473
HD 178541 HD 178848 HD 179558 HD 179722 HD 180642 HD 181007 HD 181047 HD 181098 HD 181421 HD 182293
HD 182619 HD 183098 HD 183418 HD 183993 HD 184591 HD 184592 HD 184768 HD 185055 HD 185147 HD 185353
HD 185413 HD 185527 HD 186196 HD 187000 HD 188168 HD 188386 HD 188522 HD 189751 HD 190067 HD 190404
HD 190412 HD 190536 HD 190873 HD 191425 HD 191499A HD 191785 HD 192732 HD 192773 HD 193116 HD 193953
HD 195220 HD 195987 HD 196689 HD 196692 HD 197210 HD 197274 HD 197396 HD 197657 HD 197737 HD 198402
HD 198456 HD 198482 HD 199580 HD 199660 HD 200213 HD 200386 HD 201270 HD 201702 HD 201924 HD 202109
HD 202365 HD 202585 HD 202620 HD 202751 HD 202835 HD 202999 HD 203384 HD 203712 HD 204079 HD 204814
HD 205286 HD 205321 HD 205606 HD 206243 HD 206557 HD 206928 HD 206993 HD 207032 HD 207372 HD 207487
HD 207740 HD 207771 HD 207839 HD 207874 HD 207966A HD 208201 HD 208398 HD 208880 HD 209181 HD 209262
HD 209776 HD 210123 HD 210144 HD 211513 HD 211642 HD 212094 HD 212291 HD 212587 HD 212771 HD 212989
HD 213012 HD 213764 HD 213786 HD 213920 HD 215097 HD 215144 HD 215152 HD 215183 HD 215500 HD 215696
HD 215704 HD 215775 HD 215886 HD 216103 HD 216259 HD 216284 HD 216560 HD 216572 HD 217635 HD 218105
HD 218220 HD 218790 HD 218949 HD 219029 HD 219202 HD 219514 HD 219670 HD 219829 HD 219920 HD 220339
HD 220658 HD 220871 HD 221194 HD 221639 HD 221822 HD 221862 HD 222405 HD 222455 HD 223070 HD 223301
HD 223302 HD 223374 HD 223498 HD 223662 HD 223847 HD 223971 HD 224116 HD 224844 HD 225004 HD 225021
HD 225170 HD 225242 HD 225261 HD 226099a HD 226099b HD 232118 HD 233373 HD 233389 HD 233608 HD 233826
HD 233874 HD 233882 HD 236424 HD 236427 HD 237522 HD 237707 HD 237742 HD 237960 HD 238015 HD 238130
HD 250047 HD 251383 HD 255639 HD 257886 HD 337457 HD 347850 HD 347898 31 Com HIP 4114 HIP 8358
HIP 13338 HIP 29814 HIP 31581 HIP 34498 HIP 34866 HIP 35534 HIP 35989 HIP 36522 HIP 37146 HIP 39883
HIP 40751 HIP 42304 HIP 42491 HIP 45289 HIP 45863 HIP 46854 HIP 47975 HIP 48786 HIP 49104 HIP 50638
HIP 52782 HIP 56408 HIP 56570 HIP 59321 HIP 62911 HIP 64706 HIP 65221 HIP 65485 HIP 65837 HIP 66931
HIP 69142 HIP 76112 HIP 76566 HIP 78068 HIP 81831 HIP 83630 HIP 88208 HIP 92881 HIP 94075 SAO 45472

                 


4.2 H$\alpha $ morphology and absolute fluxes

The Balmer H$\alpha $ line is an important indicator for chromospheric activity as well as for circumstellar emission and mass flow in late-type stars. Active stars have usually shallower H$\alpha $ absorption than normal stars of similar spectral type and luminosity class while some of the very active stars of the RS CVn class even have H$\alpha $ in emission. Our goal here is to verify the chromospheric nature of the Ca II H and K emission by an independent measure of the H$\alpha $ core flux. We measure the inner 1-Å portion of the H$\alpha $ line from our continuum-normalized spectra and then relate it to the absolute continuum flux, ${\cal F}_{\rm c}$, at H$\alpha $. The latter is obtained from the relations provided by Hall ([1996]) for various Morgan-Keenan (MK) classes:

 
$\displaystyle {\cal F}_{\rm c} = 7.538 - 1.081 \ (B-V)$     (6)
$\displaystyle {\rm for \ MK \ I-V} \ {\rm and} \ 0<(B-V)<1.4$      
$\displaystyle {\cal F}_{\rm c} = 7.518 - 1.236 \ (V-R)$     (7)
$\displaystyle {\rm for \ MK \ V} \ {\rm and} \ 0<(V-R)<1.4$      
$\displaystyle {\cal F}_{\rm c} = 7.576 - 1.447 \ (V-R)$     (8)
$\displaystyle {\rm for \ MK \ I-IV}\ {\rm and} \ 0<(V-R)<1.8.$      

We compute the continuum flux from the calibrations in Eqs. (6) and (7) and use the average value for further processing. The H$\alpha $-core flux in ergcm-2 s-1 (listed in Table A1 in Col. 24) is then computed from the measured 1-Å equivalent width under the spectrum, $W_{\rm core}$ (Col. 23 in Table A1), and zero intensity:

\begin{displaymath}{\cal F}_{{\rm H}\alpha} = W_{\rm core} \ {\cal F}_{\rm c} \ .
\end{displaymath} (9)

Internal errors are estimated from repeated measurements of spectra taken during one night as well as from spectra of the same star obtained in different nights, and amount to no more than a few percent. External errors are mainly due to uncertainties in the absolute continuum flux due to errors in the colors and are estimated to be around 30%. In case the star is a double-lined spectroscopic binary, we just give the combined flux unless two values appear as separate entries in Table A1.

Out of the total of 371 H&K emission-line stars, 46 have H$\alpha $ in emission or significantly filled-in by emission. The panels in Fig. B2 in the Appendix contain plots of these stars around the H$\alpha $-line region along with all other stars that have strong Ca II emission with $I_{\rm K}\geq 4$.

4.3 Lithium detections and abundances

The presence of a strong lithium line is generally a sign of stellar youth and thus indirectly also of stellar activity despite that it is still not fully clear how the lithium equivalent width relates to magnetic activity (e.g. Soderblom et al. [1993]). More observations of lithium in active stellar atmospheres, especially in evolved stars that had enough time to deplete their primordial lithium, are needed to understand a possible link. In this paper, we present lithium measurements of 385 stars with H and K emission. Figure B3 in the Appendix shows plots of all stars with $W_{\rm Li}\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displ...
...{\offinterlineskip\halign{\hfil$\scriptscriptstyle ... mÅ. Two stars (HD 144872 and HIP 82042) had an extended cosmic-ray hit at 6707.7 Å and could not be measured.

We either fit a double Gaussian or, in case the Li line is stronger than $W_{\rm Li}\approx$ 70 mÅ, a single Gaussian to the Li line. In some cases we directly integrate the area under two suitably chosen continuum points. Both tasks are carried out with IRAF's splot routine and result in typical internal errors of 3-5%. However, if the Li-line strength is below $\approx $15 mÅ, this error increases to 10-20% depending on the S/N ratio of the spectrum. Note, that the equivalent widths in Table A1 include both lithium isotopes, i.e. 6Li at 6707.76 Å and 7Li at 6707.91 Å but exclude the nearby Fe I 6707.443 + CN blend unless otherwise noted. This is achieved by either a double-Gaussian fit or by fitting a symmetric profile to the red side of the lithium line. We estimate the lower limit for a positive detection of lithium to approximately 2-3 mÅ but it strongly depends on the S/N ratio of the spectrum. Because blending with the nearby Fe I line is a major source of uncertainty for measuring small lithium equivalent widths, we estimate that our values in Table A1 have external uncertainties of 5-10% for $W_{\rm Li}\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displ...
...er{\offinterlineskip\halign{\hfil$\scriptscriptstyle ...15 mÅ and 10-20% for $W_{\rm Li}\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displ...
...r{\offinterlineskip\halign{\hfil$\scriptscriptstyle ...15 mÅ.

Lithium abundances are determined with the non-LTE curves of growth from Pavlenko & Magazzù ([1996]). Respective effective temperatures are adopted from the Hipparcos B-V color, listed again in Table A1 for reasons of completeness, and the calibration from Flower ([1996]). For effective temperatures between the values for which abundances are listed in Table 1 in Pavlenko & Magazzù, we interpolate by fitting a third-order polynomial to the various entries. These abundances are uncertain by only 0.05 dex to 0.1 dex when we propogate the uncertainties from the equivalent-width measurement. If we further assume an error of $\pm$100 K for the effective stellar temperatures, the uncertainties of our abundances increase to 0.15-0.16 dex.

Throughout this paper, we give logarithmic abundances on a scale with $\log n$(H) = 12.00. On this scale the observed solar photospheric Li abundance listed by Grevesse & Anders ([1991]) is 1.16 $\pm$ 0.1, and the Li-6708 line appears to have an equivalent width of around 2 mÅ. This value is comparable to the detection limit from our spectra. If an entry in Table A1 is zero, then no Li above $\approx2-3$ mÅ was detected. An entry with $\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displaystyle ... mÅ means a very weak lithium line is likely present but is unreliably small to be measured. The largest equivalent widths in our sample were measured for HD 140637 (420 mÅ), HD 6665 (398 mÅ), HD 217352 (331 mÅ) and HD 109703 (300 mÅ), which basically amount to the primordial lithium abundance. Out of the 385 stars in our (red) sample, 102 (26%) had undetectable Li, 119 (31%) had Li below 10 mÅ, 128 (33%) between 10-99 mÅ, and 36 (9.3%) more than 100 mÅ (detections in SB2s and SB3s are counted only once). Two stars in Table A2 that have no H&K emission but were we obtained a red-wavelength spectrum seem to have significant lithium: HD 32915 with 52 mÅ ($\log n$(Li) = 1.57) and HD 123999 with 18 mÅ ($\log n$(Li) = 1.22). Both stars appear to be single.

4.4 Strontium Sr II 4077-Å line strength

Sr II 4077 was noted to be a primary luminosity indicator for late F, G, and even K and M stars (Gray & Garrison [1989]). The solar spectrum shows Sr II 4077 as a triplet line (4077.580, 4077.724, 4077.834) with a total equivalent width of 428 mÅ. However, the line is by far dominated by the 4077.724-Å transition with a low excitation potential of zero.

We fit a Gaussian or, if inappropriate due to saturation, a Voigt function to the Sr II blend and measure its equivalent width and residual intensity. Our fitting procedure minimizes the influences of the nearby La II and Cr II+Ce II blends on the blue side of the line by fitting mostly the red wing of the Sr II profile. Repeated measurements show an internal error of the equivalent width of less than 10% but continuum uncertainties, rotational broadening, low signal-to-noise ratio, and heavy blending account for an estimated external error of $\approx $ 20 - 40%. The residual intensity, i.e. line depth measured from the continuum, is taken from the minimum of the Gaussian fit. The numerical results are listed in Table A1 and Table A2.


  \begin{figure}\includegraphics[angle=0,width=18cm]{F4.EPS}\end{figure} Figure 4: Histograms for the survey results. a) Ca II K-line intensities ($I_{\rm K}$). The scale is from 0 (no emission) to 5 (emission at or above the continuum) according to Wilson ([1976]). b) Absolute emission-line fluxes for the Ca II-K line ( $\log{\cal F}'(K)$). c) Absolute emission-line fluxes for H$\alpha $ ( $\log{\cal F}({\rm H}\alpha)$). d) Observed Li I 6708-Å equivalent widths in milli-Å ( $EW_{\rm Li}$). e) Logarithmic lithium abundances, $\log n({\rm Li})$, in units of the hydrogen abundance ( $\log n({\rm H})=12.00$). f) Line-core intensity of the Sr II 4077-Å line ( $I_{\rm SrII}$) with respect to the continuum. g) Rotational line broadening in kms-1 ($v\sin i$). h) Photometric y amplitudes in magnitudes ($\Delta y$). i) Rotation periods in days ( $P_{\rm rot}$)

  
4.5 Radial velocities and binarity

Radial velocities were derived from the blue-wavelength spectra and the red-wavelength spectra by cross-correlating them with spectra of velocity standard stars taken during the same night. The following velocity standards were adopted from Scarfe ([1990]): $\beta $ Oph (K2III, $v_{\rm r}$ = -12.18 kms-1) $\alpha $ Ari (K2IIIab, $v_{\rm r}$ = -14.51 kms-1), $\beta $ Gem (K0III, $v_{\rm r}$ = +3.23 kms-1), and 35 Peg (K1III-IV, $v_{\rm r}$ = +54.26 kms-1). At least two spectra of standard stars were obtained each night. All cross correlations were computed with IRAF's fxcor routine. It fits one or more Gaussians to the cross-correlation function in case the star is a double or triple-lined spectroscopic binary, respectively. A brief description of the measuring procedure and several applications to spotted stars were presented and discussed by Fekel et al. ([1999]). Several of the cross-correlation functions in the present paper appear asymmetric due to the presence of cool starspots. Measuring the velocity from a fit to the peak of the cross-correlation function would result in a less accurate velocity. Therefore, our Gaussian fits were computed to fit the entire cross-correlation profile, and not just the peak. Differences between such fits can amount to up to 3 kms-1 for the most asymmetric cases. Errors due to spectral-type mismatch between reference stars and program stars depend upon rotational broadening and add to the total error. Several tests with different reference stars gave negligible internal errors for $v\sin i\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
$\displays...
...r{\offinterlineskip\halign{\hfil$\scriptscriptstyle ...10 kms-1, approximately $\pm$0.1 kms-1 for $v\sin i$ up to 20 kms-1 and $\approx $0.3 kms-1 up to 50 kms-1. These errors are considered small and are not included in the quoted errors in this paper. Our results are listed in Tables A1 and A2 along with the errors ( $\sigma_{\rm vr}$) from the Gaussian fit. Note that the spectral region around the Ca II resonance lines (3920-3980 Å) was excluded from the blue-wavelength cross correlations, as was the H$\alpha $ region (6558-6568 Å) from the red-wavelength cross correlations.

Our sample contains altogether 36 single-lined spectroscopic binaries (SB1), 17 of them are new detections (according to Simbad). The newly discovered SB1s are HD 553, HIP 999, HD 16884, HD 62668, HD 78644, HIP 46634, HD 82159, HD 82841, HIP 50072, HD 112099, HIP 63322, HIP 63442, HD 138157, HD 142680, HD 150202, HD 153525, and HD 190642. A further 16 targets were found to be possible SB1s. In these cases the difference in velocity from the red to the blue spectrum was still larger than the sum of their uncertainties plus 1$\sigma$. These targets are HD 18645, HD 24053, HD 23551, HD 40891, HD 43516, HD 66553, HD 76799, HD 95188, HD 95724, HD 104067, HD 105963B, HD 120205, HD 147866, HD 171067, HD 184591, and HD 218739. The latter forms a visual pair with HD 218738 (=KZ And), a well-known active binary and listed in the CABS catalog.

For the cases where the cross-correlation function was double peaked, we fitted a double Gaussian to it and list the individual velocities and their errors in separate rows in Table A1 and Table A2. The stellar component with the stronger absorption lines is always called the primary (indicated by the suffix "a''). The component with the weaker line is called component "b''. Altogether, 30 double-lined spectroscopic binaries (SB2) and two triple-lined spectroscopic binaries (SB3) are in our sample. The latter are HD 86590 (DH Leo), and HD 237944A. HD 237944A appears to be a newly discovered SB3 system. HD 95559, HD 139691 (ADS 9731AB) and HIP 76563 appear triple lined in the cross-correlation function from a single blue or red spectrum but that needs confirmation. At the moment, we list them as possible triple-lined systems and give three velocities in Tables A1 or A2. The double-lined systems are HD 8997, HD 9902, HD 18955, HD 27130, HD 27149, SAO 150676, SAO 151224, HD 45762, HD 50255, HD 61994, HD 73512, HIP 77210, HD 82286, HD 93915, HD 95559 (possible SB3), HD 105575, HD 106855, HD 109011, HD 111487, HD 112859, BH Vir, HD 127068, HD 136655, HD 143937, HD 155802, CG Cyg, HD 197913A, HD 199967AB, HD 202109, and HD 226099. Out of these 30 systems, 19 are new detections. The binary components of HD 199967AB are not resolved at the entrance slit and the radial velocity for component B from the blue spectrum is very uncertain due to a double-peaked cross-correlation peak. We can not decide whether it is truly doubled or just spurious. In any case, the velocity from the stronger of the two peaks is listed in Table A1 (the weaker is at 31.0 $\pm$ 5.9 kms-1). The spectrum of the RS CVn binary CG Cyg (CABS # 177) appears to consist of two very broad lines at $-67\pm15$ kms-1 and $+65\pm23$ kms-1, respectively, and one very sharp system of lines at $-0.6\pm4.3$ kms-1, practically at the binary's center-of-mass velocity. The latter line system may be due to a third star but we can not exclude an absorption spectrum due to circumbinary material as suggested by Milone & Naftilan ([1980]). At the moment, we continue to list the star as a SB2. A similar case is HD 105575 which is classified as a $\beta $ Lyrae-type eclipsing binary in Simbad. Our spectrum shows moderately strong and sharp H&K emission lines while another system of broad absorption lines is present as well. We suggest that the sharp lines are from circumbinary material and the broad lines from one of the two stellar components. Note that its H$\alpha $ line appears to be tripled and shows another cross-correlation peak at 130 $\pm$ 4 kms-1.

Three systems are identified with radial velocities well above 100 kms-1. HD 108564, a single star with weak Ca II emission and a single velocity measure of vr= +111 kms-1, HD 142680, a single-lined spectroscopic binary with weak emission and two velocity measures of vr=-111 and -83 kms-1. It has a double-peaked cross-correlation function but the spectrum shows no clear evidence of the secondary lines. We list it as a SB1 but it could to be an unresolved SB2 system. If so, the second peak in the red spectrum gives $v_{\rm r}=-52.5\pm3.5$ kms-1. HD 143937, a double-lined spectroscopic binary with strong Ca II emission and with peak velocities of even -166 and -170 kms-1 for the primary and secondary, respectively. As a comparison, a recent discovery of an extreme runaway star (HIP 60350; Maitzen et al. [1998]) with +220 kms-1 pointed in the direction of a dynamical cluster ejection rather than to a supernovae scenario.

In case a close visual component was spatially resolved at the spectrograph entrance slit and two separate spectra were obtainable, we adopt the notation that the brighter of them is denoted component "A'', and the fainter component "B''. The A-component of the close visual binary HD 197913 turned out to be a SB2 with components Aa and Ab.


 

 
Table 3: New Doppler-imaging candidates

Star
V $\Delta V_{\rm spot}$ Sp. SB? $P_{\rm phtm}$ $v\sin i$ Notes
    (mag) type   (days) (kms-1)  

HD 553
8 $.\!\!^{\rm m}$1 0.05 K0III SB1 9.06 38 =V741 Cas, eclipsing
HIP 999 8.4 0.06 G8V SB1 1.84 20 =LN Peg (=BD+13$^\circ$13)
SAO 150676 9.0 0.07 G0V+G6V SB2 1.71 26 G6-star
HD 291095 9.0 0.25 K2-3IV SB1 3.87 34 =V1355 Ori, not in HIP
SAO 151224a 9.3 0.15 KIV+GIV SB2 4.98 46 eclipsing
HD 43989 8.5 0.03 G0IV S 3.6 36 =V1358 Ori, str. Li
HD 78644 8.2 ? G3V SB1 ? 47 no photometry
HD 82286 7.9 0.13 K0IV SB2 3.21 17/16 =FF UMa, str. H$\alpha $ em.
HD 95559 9.0 0.08 <G5V> SB2 2.94 31/26 possible triple
HD 106855 9.4 0.06 K1V SB2 2.04 13/16 =UV Crv, H$\alpha $ em.
HD 109703 8.6 0.07 G5III S 14.2 35 very strong Li
HD 111487 9.0 0.10 G5V SB2 1.31 36 =IM Vir, eclipsing
HD 138157 7.1 0.12 K0III SB1 14.3 29 =OX Ser
HD 143937 8.6 0.10 <K0V> SB2 0.913 50/43 =V1055 Sco, eclipsing
HD 145230 9.2 0.13 K2IV SB2 12.3 19 =PX Ser
HD 152178 8.1 0.10 K0III SB1 22.1 23 =V2253 Oph
HD 171488 7.4 0.07 G2V S 1.337 36 =V889 Her, str. Li
HD 178450 7.8 0.10 G8V SB1 2.13 21 =V478 Lyr
HD 190540 8.4 0.08 K0III SB1 17.7 19 =V4091 Sgr
HD 217352 7.2 0.04 K2III S 18.4 35 strong Li
HD 218153 7.6 0.10 K0III SB1 25.9 24 =KU Peg

             


4.6 Space motions

Space motions are computed with the fundamental Hipparcos data (positions, distances, and proper motions) and our radial velocities. For the few entries without a Hipparcos parallax the value listed in Simbad was adopted and, if no value was listed in Simbad, we used the assigned luminosity class and the visual magnitude to determine an approximate distance (this was done for three stars: HD 9902, HD 16884, and HD 181219). No proper motions were available for HD 23386 and no distance for SAO 45472.

In case of a spectroscopic binary, or when more than one radial velocity was available, a mean was adopted. This will introduce random scatter to the space motions of the newly discovered binaries because mostly only two velocities are available and their center-of-mass velocity remains undetermined. We thus plan to interpret these data with care.

The definitions and the computing procedure for the three space-motion components (U, V, W) were outlined by Johnson & Soderblom ([1987]) and we basically follow their recommendations and adopt a right-handed galactic coordinate system. This makes our new values comparable to the values in the CABS catalog. The numerical values are listed in Tables A1 and A2. Again, we emphasize that for the cases of newly discovered binary systems, the observed radial velocity (or the average of the observed velocities in case the system is a SB2) are used in the computation of the space motions and not the (yet unknown) systemic velocities of the center of mass. These UVW-velocities are thus just first estimates.

4.7 Rotational velocities

Rotational velocities, $v\sin i$, for the stars with Ca II H and K emission were determined from the widths of selected lines in the red-wavelength spectra. The procedure includes a Gaussian or Voigt fit to several unblended line profiles (mostly Ni I 6643.63 Å and Fe I 6663.45 Å) and the calibration of the average FWHM with $v\sin i$ according to the recipe of Fekel ([1997]). A mean macroturbulence profile and a (nightly) instrumental profile (approximated by a Gaussian) are subtracted from each FWHM measure according to Strassmeier et al. ([1990]). The following macroturbulence velocities were adopted: 3 kms-1 for solar-type dwarfs, 2 kms-1 for K dwarfs, 5 kms-1 for <G5 giants and subgiants, and 3 kms-1 for >G5 giants and subgiants (listed in Col. 9 in Table A1 and Table A2). Errors for $v\sin i$ from the red spectra are estimated to be 2-4 kms-1 for stars with $v\sin i<$50 kms-1 and $\approx $5 kms-1 for stars with higher rotation rates.

For stars without a red spectrum, i.e. the stars without Ca II H and K emission, $v\sin i$ was estimated from the blue spectra by measuring the FWHM of two relatively unblended lines: the V I 4020.89-Å line and the Fe I 4087.80-Åline. The final values for $v\sin i$ in Table A2 were obtained from V I because this line turned out to be less prone to blending than Fe I 4087.80-Å. Again, Fekel's ([1997]) relation was used for the transformation. The precision of $v\sin i$ from the blue spectra is comparably low due to the low S/N ratio and spectral resolution and is of the order of $\pm 5-8$ kms-1. A correlation of $v\sin i$ from V I 4020 Å and Ni I 6643.63 Å for the stars that had a blue and a red spectrum shows no systematic deviations above the expected measuring error and a rms of 5-8 kms-1.

The results for the standard stars $\beta $ Oph (K2III), $\alpha $ Ari (K2IIIab) and 35 Peg (K1III-IV) were $1.7\pm 1.1$ kms-1, $1.8\pm 1.0$ kms-1 and $1.5\pm 1.2$ kms-1, respectively, and compare well with the values listed in Fekel ([1997]) and references therein (i.e. 1.6-2.5 kms-1, 1.8-3.1 kms-1, and 1.0 kms-1 for above stars, respectively).

4.8 Light curves and rotation periods

Table A3 presents the results from our photometric survey. Out of the 371 stars with Ca II H& K emission only 172 could be observed because of telescope-time limitations but 168, i.e. 97.7%, were found to be variable. A photometric period was determined for 134 of them, i.e. for 78% for the original 172 H&K emission-line stars. Lower limits for the period are found for further 11 targets. Additionally, a total of 32 of our comparison or check stars turned out to be variables and for 22 of them a possible period, or a lower limit for the period, was obtained. All periods and full y amplitudes in magnitudes are listed in Table A3 in Col. 7 and Col. 6, respectively. The periods are always given up to the last significant digit. Table A3 also gives information on the comparison and check star (Cols. 2 and 3), the JD of start and end of the observations (Cols. 4 and 5), the number of data points (Col. 8), and some individual notes (Col. 9). The full table is available electronically. Except for a few eclipsing binaries (e.g. HD 553, HD 105575), we interpret the photometric periods found in this paper to be the stellar rotation period. Four of our target stars were recently discovered to be variables by Cutispoto et al. ([1999]). For two of these stars, we obtained a first period and confirmed the periods for the other two targets. Altogether, 170 new variables were discovered. The light curves in the figures are phased with the periods from Table A3 and a zero point in time of T0=2 451 000. Figure B4 in the Appendix presents the light curves for stars that have a photometric period. Figure B5 in the Appendix shows the data for stars without a period.

We applied a program that performs a multiple frequency search through Fourier transforms with a non-linear least-squares minimization of the residuals (Sperl [1998]). The Fourier search range included a large number of frequencies up to the Nyquist frequency with a frequency spacing optimized for each individual data set. In most situations the frequency with the highest amplitude was adopted but, in some cases where the light curve appeared obviously double humped, twice the best-fit frequency was used. The best fits are determined by minimizing the squares of the residuals between trial fits and measurements. Further details on the period analysis can be found in Strassmeier et al. ([1999]).

To judge the significance of certain frequency peaks we compute a running mean of the frequency distribution for a signal-to-noise ratio of 4:1 which was found empirically by Breger et al. ([1993]) to indicate the limit for a significant period. From numerical simulations with varying amounts of white noise, Kuschnig et al. ([1997]) showed that frequency peaks with $S/N \geq$ 4.0 suggest a 99.9% probability for a real period. Furthermore, since we interpret the photometric period to be the stellar rotation period, a particular period must be in agreement with the spectroscopically measured $v\sin i$ and an assumed stellar radius according to the adopted spectral classification. This reduces the range of possible periods significantly.


next previous
Up: The Vienna-KPNO search for

Copyright The European Southern Observatory (ESO)