The population structure of C + has been calculated for
the electron temperatures in the range from 500 K to K
and for electron densities below 106 cm-3. Calculations for
higher densities were also performed, including a full treatment of
electron collisional processes between excited states, but this will
be the subject of a subsequent paper. In the present work, we also
use a full treatment of collisional processes but at the relatively
low densities considered here, there is no significant difference
between the full treatment and the more approximate treatment
described by Storey ([1994]) and Kisielius et al. ([1998]).
Te [1000 K] | |||||||||||
Transition | ![]() |
Case | 3.5 | 5.0 | 7.5 | 10.0 | 12.5 | 15.0 | 20.0 | ||
8h (2H![]() |
- | 6g (2G![]() |
1866.2 | A | 3.52+0 | 2.44+0 | 1.57+0 | 1.13+0 | 8.71-1 | 6.99-1 | 4.90-1 |
8h (2H![]() |
- | 5g (2G![]() |
931.4 | A | 3.19+0 | 2.22+0 | 1.43+0 | 1.03+0 | 7.90-1 | 6.34-1 | 4.44-1 |
7h (2H![]() |
- | 6g (2G![]() |
3068.8 | A | 8.18+0 | 5.58+0 | 3.52+0 | 2.51+0 | 1.91+0 | 1.52+0 | 1.05+0 |
7h (2H![]() |
- | 5g (2G![]() |
1157.9 | A | 7.82+0 | 5.33+0 | 3.37+0 | 2.39+0 | 1.82+0 | 1.45+0 | 1.01+0 |
7g (2G![]() |
- | 5f (2F![]() |
1144.4 | A | 4.23+0 | 3.05+0 | 2.06+0 | 1.53+0 | 1.21+0 | 9.97-1 | 7.80-1 |
7g (2G![]() |
- | 4f (2F![]() |
534.2 | A | 5.07+0 | 3.66+0 | 2.47+0 | 1.84+0 | 1.45+0 | 1.20+0 | 9.35-1 |
7f (2F![]() |
- | 3d (2D![]() |
237.5 | A | 3.28+0 | 2.50+0 | 1.81+0 | 1.42+0 | 1.17+0 | 1.02+0 | 9.61-1 |
B | 3.33+0 | 2.55+0 | 1.85+0 | 1.45+0 | 1.20+0 | 1.04+0 | 9.84-1 | ||||
7d (2D![]() |
- | 3p (2P![]() |
179.6 | A | 3.82-1 | 3.16-1 | 2.49-1 | 2.08-1 | 1.81-1 | 1.64-1 | 1.55-1 |
B | 3.93+0 | 3.25+0 | 2.56+0 | 2.14+0 | 1.86+0 | 1.68+0 | 1.59+0 | ||||
6h (2H![]() |
- | 5g (2G![]() |
1851.6 | A | 3.03+1 | 2.00+1 | 1.22+1 | 8.53+0 | 6.40+0 | 5.04+0 | 3.44+0 |
6g (2G![]() |
- | 5f (2F![]() |
1819.9 | A | 9.74+0 | 6.88+0 | 4.53+0 | 3.32+0 | 2.59+0 | 2.12+0 | 1.65+0 |
6g (2G![]() |
- | 4f (2F![]() |
646.2 | A | 1.26+1 | 8.88+0 | 5.85+0 | 4.29+0 | 3.35+0 | 2.74+0 | 2.13+0 |
6f (2F![]() |
- | 4d (2D![]() |
615.1 | A | 3.97+0 | 2.99+0 | 2.14+0 | 1.66+0 | 1.36+0 | 1.17+0 | 1.08+0 |
B | 4.03+0 | 3.05+0 | 2.18+0 | 1.69+0 | 1.39+0 | 1.20+0 | 1.11+0 | ||||
6f (2F![]() |
- | 3d (2D![]() |
257.5 | A | 6.63+0 | 5.01+0 | 3.57+0 | 2.78+0 | 2.28+0 | 1.96+0 | 1.81+0 |
B | 6.74+0 | 5.09+0 | 3.64+0 | 2.83+0 | 2.32+0 | 2.01+0 | 1.86+0 | ||||
6d (2D![]() |
- | 3p (2P![]() |
191.0 | A | 5.56-1 | 4.50-1 | 3.48-1 | 2.88-1 | 2.48-1 | 2.21-1 | 2.05-1 |
B | 6.41+0 | 5.18+0 | 4.01+0 | 3.32+0 | 2.85+0 | 2.55+0 | 2.37+0 | ||||
5g (2G![]() |
- | 4f (2F![]() |
990.3 | A | 5.07+1 | 3.44+1 | 2.17+1 | 1.55+1 | 1.18+1 | 9.56+0 | 7.31+0 |
5f (2F![]() |
- | 4d (2D![]() |
923.0 | A | 9.16+0 | 6.76+0 | 4.70+0 | 3.58+0 | 2.90+0 | 2.47+0 | 2.21+0 |
B | 9.28+0 | 6.86+0 | 4.78+0 | 3.65+0 | 2.95+0 | 2.52+0 | 2.25+0 | ||||
5f (2F![]() |
- | 3d (2D![]() |
299.3 | A | 1.76+1 | 1.30+1 | 9.02+0 | 6.88+0 | 5.56+0 | 4.74+0 | 4.23+0 |
B | 1.78+1 | 1.32+1 | 9.16+0 | 7.00+0 | 5.66+0 | 4.83+0 | 4.33+0 | ||||
5d (2D![]() |
- | 3p (2P![]() |
213.8 | A | 9.07-1 | 7.24-1 | 5.54-1 | 4.54-1 | 3.88-1 | 3.46-1 | 3.18-1 |
B | 1.25+1 | 9.96+0 | 7.62+0 | 6.25+0 | 5.34+0 | 4.76+0 | 4.39+0 | ||||
4f (2F![]() |
- | 3d (2D![]() |
426.7 | A | 8.06+1 | 5.65+1 | 3.72+1 | 2.73+1 | 2.14+1 | 1.79+1 | 1.51+1 |
B | 8.12+1 | 5.70+1 | 3.75+1 | 2.76+1 | 2.17+1 | 1.81+1 | 1.53+1 | ||||
4f (2F![]() |
- | 2s2p2 (2D![]() |
106.4 | A | 5.22+0 | 3.66+0 | 2.40+0 | 1.76+0 | 1.39+0 | 1.16+0 | 9.76-1 |
B | 5.26+0 | 3.69+0 | 2.43+0 | 1.79+0 | 1.40+0 | 1.17+0 | 9.91-1 | ||||
4d (2D![]() |
- | 4p (2P![]() |
1784.7 | A | 2.95-1 | 2.30-1 | 1.71-1 | 1.37-1 | 1.16-1 | 1.03-1 | 9.58-2 |
B | 6.52+0 | 5.09+0 | 3.79+0 | 3.05+0 | 2.57+0 | 2.28+0 | 2.13+0 | ||||
4d (2D![]() |
- | 3p (2P![]() |
274.7 | A | 1.37+0 | 1.07+0 | 7.94-1 | 6.38-1 | 5.38-1 | 4.77-1 | 4.45-1 |
B | 3.03+1 | 2.37+1 | 1.76+1 | 1.42+1 | 1.19+1 | 1.06+1 | 9.90+0 | ||||
4p (2P![]() |
- | 2s2p2 (2D![]() |
114.2 | A | 4.82+0 | 4.08+0 | 3.40+0 | 3.01+0 | 2.76+0 | 2.60+0 | 2.45+0 |
B | 1.25+1 | 1.03+1 | 8.24+0 | 7.02+0 | 6.24+0 | 5.74+0 | 5.45+0 | ||||
3d (2D![]() |
- | 3p (2P![]() |
723.5 | A | 2.02+0 | 1.48+0 | 1.03+0 | 7.91-1 | 6.57-1 | 5.86-1 | 5.66-1 |
B | 1.42+2 | 1.04+2 | 7.25+1 | 5.59+1 | 4.65+1 | 4.15+1 | 4.00+1 | ||||
3p (2P![]() |
- | 3s (2S![]() |
658.0 | A | 9.39+0 | 7.82+0 | 6.57+0 | 6.20+0 | 6.28+0 | 6.56+0 | 7.21+0 |
B | 7.19+1 | 5.50+1 | 4.04+1 | 3.29+1 | 2.88+1 | 2.67+1 | 2.67+1 | ||||
3p (2P![]() |
- | 2s2p2 (2D![]() |
176.2 | A | 1.11+1 | 9.23+0 | 7.75+0 | 7.31+0 | 7.41+0 | 7.73+0 | 8.50+0 |
B | 8.48+1 | 6.48+1 | 4.77+1 | 3.88+1 | 3.39+1 | 3.15+1 | 3.14+1 | ||||
3p (2P![]() |
- | 2s2p2 (2S![]() |
284.1 | A | 9.42+0 | 7.85+0 | 6.60+0 | 6.22+0 | 6.31+0 | 6.58+0 | 7.24+0 |
B | 7.21+1 | 5.52+1 | 4.06+1 | 3.30+1 | 2.89+1 | 2.68+1 | 2.68+1 | ||||
3s![]() ![]() |
- | 2s2p2 (2S![]() |
123.2 | A | 2.56+0 | 2.13+0 | 1.77+0 | 1.62+0 | 1.55+0 | 1.51+0 | 1.50+0 |
B | 4.18+0 | 3.46+0 | 2.82+0 | 2.50+0 | 2.31+0 | 2.21+0 | 2.22+0 | ||||
2s2p2 (2D![]() |
- | 2s22p (2P![]() |
133.5 | A | 8.18+2 | 7.15+2 | 5.41+2 | 4.24+2 | 3.48+2 | 2.96+2 | 2.32+2 |
2s2p2 (2S![]() |
- | 2s22p (2P![]() |
103.7 | A | 7.74+1 | 8.63+1 | 8.19+1 | 7.40+1 | 6.72+1 | 6.18+1 | 5.39+1 |
2p3 (2P![]() |
- | 2s2p2 (2D![]() |
106.6 | A | 4.06+0 | 3.40+0 | 2.75+0 | 2.39+0 | 2.18+0 | 2.06+0 | 2.05+0 |
B | 8.05+0 | 6.87+0 | 5.61+0 | 4.87+0 | 4.42+0 | 4.15+0 | 4.11+0 | ||||
Te [1000 K] | |||||||||||
Transition | ![]() |
Case | 0.50 | 0.75 | 1.00 | 1.25 | 1.50 | 2.00 | 2.50 | ||
8h (2H![]() |
- | 6g (2G![]() |
1866.2 | A | 2.07+1 | 1.45+1 | 1.12+1 | 9.22+0 | 7.83+0 | 6.02+0 | 4.88+0 |
8h (2H![]() |
- | 5g (2G![]() |
931.4 | A | 1.88+1 | 1.31+1 | 1.02+1 | 8.36+0 | 7.10+0 | 5.46+0 | 4.43+0 |
7h (2H![]() |
- | 6g (2G![]() |
3068.8 | A | 5.28+1 | 3.63+1 | 2.79+1 | 2.26+1 | 1.91+1 | 1.44+1 | 1.16+1 |
7h (2H![]() |
- | 5g (2G![]() |
1157.9 | A | 5.05+1 | 3.47+1 | 2.66+1 | 2.16+1 | 1.82+1 | 1.38+1 | 1.11+1 |
7g (2G![]() |
- | 5f (2F![]() |
1144.4 | A | 2.15+1 | 1.53+1 | 1.21+1 | 1.01+1 | 8.71+0 | 6.85+0 | 5.67+0 |
7g (2G![]() |
- | 4f (2F![]() |
534.2 | A | 2.58+1 | 1.84+1 | 1.46+1 | 1.21+1 | 1.04+1 | 8.22+0 | 6.80+0 |
7f (2F![]() |
- | 3d (2D![]() |
237.5 | A | 1.34+1 | 9.86+0 | 8.01+0 | 6.84+0 | 6.01+0 | 4.91+0 | 4.18+0 |
B | 1.36+1 | 1.00+1 | 8.12+0 | 6.93+0 | 6.10+0 | 4.98+0 | 4.25+0 | ||||
7d (2D![]() |
- | 3p (2P![]() |
179.6 | A | 1.08+0 | 8.22-1 | 6.90-1 | 6.12-1 | 5.61-1 | 4.93-1 | 4.48-1 |
B | 1.12+1 | 8.47+0 | 7.11+0 | 6.31+0 | 5.78+0 | 5.08+0 | 4.61+0 | ||||
6h (2H![]() |
- | 5g (2G![]() |
1851.6 | A | 2.31+2 | 1.54+2 | 1.16+2 | 9.21+1 | 7.63+1 | 5.63+1 | 4.42+1 |
6g (2G![]() |
- | 5f (2F![]() |
1819.9 | A | 5.46+1 | 3.83+1 | 2.99+1 | 2.47+1 | 2.10+1 | 1.63+1 | 1.33+1 |
6g (2G![]() |
- | 4f (2F![]() |
646.2 | A | 7.05+1 | 4.95+1 | 3.87+1 | 3.19+1 | 2.72+1 | 2.11+1 | 1.72+1 |
6f (2F![]() |
- | 4d (2D![]() |
615.1 | A | 1.70+1 | 1.25+1 | 1.01+1 | 8.53+0 | 7.46+0 | 6.04+0 | 5.12+0 |
B | 1.72+1 | 1.26+1 | 1.02+1 | 8.64+0 | 7.56+0 | 6.13+0 | 5.20+0 | ||||
6f (2F![]() |
- | 3d (2D![]() |
257.5 | A | 2.85+1 | 2.08+1 | 1.68+1 | 1.43+1 | 1.25+1 | 1.01+1 | 8.56+0 |
B | 2.88+1 | 2.11+1 | 1.70+1 | 1.44+1 | 1.26+1 | 1.02+1 | 8.69+0 | ||||
6d (2D![]() |
- | 3p (2P![]() |
191.0 | A | 1.84+0 | 1.40+0 | 1.16+0 | 1.01+0 | 9.06-1 | 7.67-1 | 6.76-1 |
B | 2.12+1 | 1.61+1 | 1.34+1 | 1.16+1 | 1.04+1 | 8.84+0 | 7.79+0 | ||||
5g (2G![]() |
- | 4f (2F![]() |
990.3 | A | 3.46+2 | 2.35+2 | 1.79+2 | 1.44+2 | 1.21+2 | 9.05+1 | 7.21+1 |
5f (2F![]() |
- | 4d (2D![]() |
923.0 | A | 4.35+1 | 3.13+1 | 2.49+1 | 2.09+1 | 1.81+1 | 1.44+1 | 1.21+1 |
B | 4.39+1 | 3.16+1 | 2.52+1 | 2.11+1 | 1.83+1 | 1.46+1 | 1.22+1 | ||||
5f (2F![]() |
- | 3d (2D![]() |
299.3 | A | 8.35+1 | 6.01+1 | 4.78+1 | 4.01+1 | 3.48+1 | 2.77+1 | 2.32+1 |
B | 8.42+1 | 6.06+1 | 4.83+1 | 4.06+1 | 3.52+1 | 2.80+1 | 2.35+1 | ||||
5d (2D![]() |
- | 3p (2P![]() |
213.8 | A | 3.17+0 | 2.38+0 | 1.97+0 | 1.71+0 | 1.52+0 | 1.28+0 | 1.11+0 |
B | 4.35+1 | 3.27+1 | 2.70+1 | 2.34+1 | 2.09+1 | 1.75+1 | 1.53+1 | ||||
4f (2F![]() |
- | 3d (2D![]() |
426.7 | A | 4.83+2 | 3.35+2 | 2.58+2 | 2.11+2 | 1.79+2 | 1.37+2 | 1.11+2 |
B | 4.85+2 | 3.36+2 | 2.60+2 | 2.12+2 | 1.80+2 | 1.38+2 | 1.12+2 | ||||
4f (2F![]() |
- | 2s2p2 (2D![]() |
106.4 | A | 3.13+1 | 2.16+1 | 1.67+1 | 1.37+1 | 1.16+1 | 8.88+0 | 7.21+0 |
B | 3.14+1 | 2.17+1 | 1.68+1 | 1.37+1 | 1.16+1 | 8.94+0 | 7.25+0 | ||||
4d (2D![]() |
- | 4p (2P![]() |
1784.7 | A | 1.13+0 | 8.40-1 | 6.85-1 | 5.88-1 | 5.20-1 | 4.29-1 | 3.70-1 |
B | 2.50+1 | 1.85+1 | 1.51+1 | 1.30+1 | 1.15+1 | 9.49+0 | 8.18+0 | ||||
4d (2D![]() |
- | 3p (2P![]() |
274.7 | A | 5.26+0 | 3.90+0 | 3.18+0 | 2.73+0 | 2.42+0 | 1.99+0 | 1.72+0 |
B | 1.16+2 | 8.61+1 | 7.03+1 | 6.04+1 | 5.34+1 | 4.41+1 | 3.80+1 | ||||
4p (2P![]() |
- | 2s2p2 (2D![]() |
114.2 | A | 1.44+1 | 1.10+1 | 9.20+0 | 8.10+0 | 7.33+0 | 6.32+0 | 5.66+0 |
B | 3.90+1 | 2.94+1 | 2.45+1 | 2.15+1 | 1.95+1 | 1.67+1 | 1.49+1 | ||||
3d (2D![]() |
- | 3p (2P![]() |
723.5 | A | 1.03+1 | 7.30+0 | 5.74+0 | 4.77+0 | 4.11+0 | 3.24+0 | 2.69+0 |
B | 7.18+2 | 5.08+2 | 4.00+2 | 3.33+2 | 2.87+2 | 2.26+2 | 1.88+2 | ||||
3p (2P![]() |
- | 3s (2S![]() |
658.0 | A | 3.02+1 | 2.29+1 | 1.90+1 | 1.66+1 | 1.49+1 | 1.27+1 | 1.12+1 |
B | 3.16+2 | 2.28+2 | 1.82+2 | 1.54+2 | 1.34+2 | 1.09+2 | 9.22+1 | ||||
3p (2P![]() |
- | 2s2p2 (2D![]() |
176.2 | A | 3.57+1 | 2.70+1 | 2.24+1 | 1.96+1 | 1.76+1 | 1.50+1 | 1.32+1 |
B | 3.73+2 | 2.69+2 | 2.15+2 | 1.81+2 | 1.58+2 | 1.28+2 | 1.09+2 | ||||
3p (2P![]() |
- | 2s2p2 (2S![]() |
284.1 | A | 3.04+1 | 2.30+1 | 1.91+1 | 1.67+1 | 1.50+1 | 1.27+1 | 1.13+1 |
B | 3.17+2 | 2.29+2 | 1.83+2 | 1.54+2 | 1.35+2 | 1.09+2 | 9.25+1 | ||||
3s![]() ![]() |
- | 2s2p2 (2S![]() |
123.2 | A | 7.77+0 | 5.91+0 | 4.94+0 | 4.35+0 | 3.94+0 | 3.40+0 | 3.04+0 |
B | 1.25+1 | 9.50+0 | 7.97+0 | 7.04+0 | 6.39+0 | 5.54+0 | 4.96+0 | ||||
2s2p2 (2D![]() |
- | 2s22p (2P![]() |
133.5 | A | 1.99+2 | 2.02+2 | 2.94+2 | 4.22+2 | 5.46+2 | 7.22+2 | 8.06+2 |
2s2p2 (2S![]() |
- | 2s22p (2P![]() |
103.7 | A | 4.15+1 | 3.16+1 | 2.76+1 | 2.79+1 | 3.16+1 | 4.45+1 | 5.84+1 |
2p3 (2P![]() |
- | 2s2p2 (2D![]() |
106.6 | A | 1.11+1 | 8.40+0 | 7.07+0 | 6.29+0 | 5.79+0 | 5.14+0 | 4.70+0 |
B | 1.91+1 | 1.46+1 | 1.24+1 | 1.13+1 | 1.06+1 | 9.72+0 | 9.09+0 | ||||
Transition | ![]() |
Case | a | b | c | d | f | % | ||
8h (2H![]() |
- | 6g (2G![]() |
1866.2 | A | 1.134 | -0.878 | -0.134 | -0.033 | -2.0410 | 0.00 |
8h (2H![]() |
- | 5g (2G![]() |
931.4 | A | 1.029 | -0.878 | -0.134 | -0.033 | -2.0409 | 0.00 |
7h (2H![]() |
- | 6g (2G![]() |
3068.8 | A | 2.506 | -0.911 | -0.113 | -0.024 | -2.1160 | 0.00 |
7h (2H![]() |
- | 5g (2G![]() |
1157.9 | A | 2.395 | -0.911 | -0.113 | -0.024 | -2.1160 | 0.00 |
7g (2G![]() |
- | 5f (2F![]() |
1144.4 | A | 1.530 | -0.324 | -0.188 | -0.185 | -1.3745 | 0.05 |
7g (2G![]() |
- | 4f (2F![]() |
534.2 | A | 1.836 | -0.324 | -0.188 | -0.185 | -1.3746 | 0.05 |
7f (2F![]() |
- | 3d (2D![]() |
237.5 | A | 1.422 | 0.037 | -0.009 | -0.251 | -0.8371 | 0.39 |
B | 1.450 | 0.037 | -0.007 | -0.252 | -0.8334 | 0.39 | ||||
7d (2D![]() |
- | 3p (2P![]() |
179.6 | A | 0.208 | -0.084 | -0.048 | -0.186 | -0.7186 | 0.07 |
B | 2.143 | -0.083 | -0.048 | -0.187 | -0.7186 | 0.07 | ||||
6h (2H![]() |
- | 5g (2G![]() |
1851.6 | A | 8.528 | -0.948 | -0.083 | -0.015 | -2.2204 | 0.00 |
6g (2G![]() |
- | 5f (2F![]() |
1819.9 | A | 3.320 | -0.304 | -0.174 | -0.190 | -1.4071 | 0.05 |
6g (2G![]() |
- | 4f (2F![]() |
646.2 | A | 4.290 | -0.304 | -0.174 | -0.190 | -1.4071 | 0.05 |
6f (2F![]() |
- | 4d (2D![]() |
615.1 | A | 1.661 | 0.023 | -0.017 | -0.243 | -0.8835 | 0.34 |
B | 1.695 | 0.021 | -0.016 | -0.243 | -0.8800 | 0.34 | ||||
6f (2F![]() |
- | 3d (2D![]() |
257.5 | A | 2.778 | 0.023 | -0.017 | -0.243 | -0.8835 | 0.34 |
B | 2.834 | 0.021 | -0.016 | -0.243 | -0.8800 | 0.34 | ||||
6d (2D![]() |
- | 3p (2P![]() |
191.0 | A | 0.288 | -0.085 | -0.059 | -0.187 | -0.7652 | 0.12 |
B | 3.315 | -0.083 | -0.058 | -0.188 | -0.7634 | 0.13 | ||||
5g (2G![]() |
- | 4f (2F![]() |
990.3 | A | 15.451 | -0.309 | -0.154 | -0.190 | -1.5065 | 0.04 |
5f (2F![]() |
- | 4d (2D![]() |
923.0 | A | 3.585 | -0.003 | -0.028 | -0.230 | -0.9691 | 0.27 |
B | 3.649 | -0.004 | -0.028 | -0.229 | -0.9656 | 0.27 | ||||
5f (2F![]() |
- | 3d (2D![]() |
299.3 | A | 6.878 | -0.003 | -0.028 | -0.230 | -0.9691 | 0.27 |
B | 7.001 | -0.004 | -0.028 | -0.229 | -0.9656 | 0.27 | ||||
5d (2D![]() |
- | 3p (2P![]() |
213.8 | A | 0.454 | -0.089 | -0.058 | -0.187 | -0.7970 | 0.11 |
B | 6.247 | -0.086 | -0.056 | -0.189 | -0.7936 | 0.11 | ||||
4f (2F![]() |
- | 3d (2D![]() |
426.7 | A | 27.273 | -0.053 | -0.039 | -0.209 | -1.1448 | 0.15 |
B | 27.586 | -0.055 | -0.039 | -0.208 | -1.1416 | 0.15 | ||||
4f (2F![]() |
- | 2s2p2 (2D![]() |
106.4 | A | 1.765 | -0.053 | -0.039 | -0.209 | -1.1448 | 0.15 |
B | 1.785 | -0.055 | -0.039 | -0.208 | -1.1416 | 0.15 | ||||
4d (2D![]() |
- | 4p (2P![]() |
1784.7 | A | 0.137 | -0.067 | -0.027 | -0.211 | -0.8425 | 0.09 |
B | 3.047 | -0.066 | -0.026 | -0.212 | -0.8391 | 0.09 | ||||
4d (2D![]() |
- | 3p (2P![]() |
274.7 | A | 0.638 | -0.067 | -0.027 | -0.211 | -0.8424 | 0.09 |
B | 14.150 | -0.066 | -0.026 | -0.212 | -0.8391 | 0.09 | ||||
4p (2P![]() |
- | 2s2p2 (2D![]() |
114.2 | A | 3.014 | -0.643 | -0.054 | -0.092 | -1.0502 | 0.01 |
B | 7.022 | -0.231 | -0.042 | -0.144 | -0.7814 | 0.03 | ||||
3d (2D![]() |
- | 3p (2P![]() |
723.5 | A | 0.791 | -0.508 | 0.036 | -0.341 | -1.3973 | 0.01 |
B | 55.869 | -0.494 | 0.032 | -0.336 | -1.3773 | 0.01 | ||||
3p (2P![]() |
- | 3s (2S![]() |
658.0 | A | 6.201 | -0.304 | 0.412 | 0.215 | -0.3676 | 0.13 |
B | 32.883 | -0.752 | 0.140 | -0.281 | -1.4218 | 0.02 | ||||
3p (2P![]() |
- | 2s2p2 (2D![]() |
176.2 | A | 7.312 | -0.304 | 0.412 | 0.215 | -0.3676 | 0.13 |
B | 38.774 | -0.752 | 0.140 | -0.281 | -1.4218 | 0.02 | ||||
3p (2P![]() |
- | 2s2p2 (2S![]() |
284.1 | A | 6.224 | -0.304 | 0.412 | 0.215 | -0.3676 | 0.13 |
B | 33.006 | -0.752 | 0.140 | -0.281 | -1.4217 | 0.02 | ||||
3s![]() ![]() |
- | 2s2p2 (2S![]() |
123.2 | A | 1.619 | -0.982 | 0.196 | -0.019 | -1.2415 | 0.09 |
B | 2.495 | -0.487 | 0.041 | -0.105 | -0.8786 | 0.20 | ||||
2s2p2 (2D![]() |
- | 2s22p (2P![]() |
133.5 | A | 423.926 | -1.353 | 0.167 | -0.047 | -2.2304 | 0.02 |
2s2p2 (2S![]() |
- | 2s22p (2P![]() |
103.7 | A | 73.955 | -1.477 | 0.217 | 0.006 | -1.8827 | 0.02 |
2p3 (2P![]() |
- | 2s2p2 (2D![]() |
106.6 | A | 2.387 | -0.228 | 0.046 | -0.107 | -0.6876 | 0.09 |
B | 4.873 | -0.163 | 0.022 | -0.122 | -0.6327 | 0.08 | ||||
In Table 3, we give the effective recombination coefficients
for the strongest recombination lines of
C II for the temperature range
K. Only the lines with
the
cm3s-1
and
nm at one or more temperatures are presented.
Table 3 is a specimen table showing only the strongest lines.
More extensive tables showing weaker lines are available in electronic form
from the CDS.
The effective recombination coefficient is defined such that the emissivity
,
in a transition of wavelength
is
We tabulate results for a single value of electron density Ne = 104 cm-3 because the recombination coefficients are not very sensitive to this parameter at low temperature.
The effective recombination coefficients
for the lower temperatures
K are presented
in Table 4 for the same set of lines as given in
Table 3. Once again the reader is referred to the electronic
version of this paper at the CDS for more extensive tabulations.
Subsequently, the coefficients were fitted by a least-squares algorithm
to the functional form
We present the coefficients of the fits to the recombination coefficients in
Table 5 for the same set of lines as given in Table 3.
The fitting accuracy (the maximum error of fitting in percent) is also given.
This gives an indication that fitting is very accurate for the temperature
range (
K) considered here. Due to the more complex nature of
recombination at lower temperatures caused by the interaction of dielectronic
and radiative recombination, fits were not made for lower temperatures. Fit
coefficients for a more extensive set of lines are available from the CDS.
State | Nahar | Present | |
2p3 | 2P![]() |
36.2 | 0.4 |
2s2p2 | 2D | 10.8 | 21.0 |
2s23d | 2D | 4.2 | 3.7 |
2s22p | 2P![]() |
4.1 | 36.6 |
2s24d | 2D | 2.6 | 2.7 |
2s24f | 2F![]() |
1.7 | 1.7 |
2s25d | 2D | 1.6 | 1.7 |
2s25f | 2F![]() |
1.6 | 1.6 |
2s23p | 2P![]() |
1.2 | 3.9 |
2s24p | 2P![]() |
- | 1.0 |
Transition | ![]() |
Case | Present | PPB | |
5g (2G) - | 4f (2F![]() |
990.3 | A | 1.545 | 1.621 |
4f (2F![]() |
3d (2D) | 426.7 | A | 2.727 | 2.795 |
3d (2D) - | 3p (2P![]() |
723.5 | A | 0.079 | 0.065 |
B | 5.587 | 5.184 | |||
3p (2P![]() |
3s (2S) | 658.0 | A | 0.620 | 0.329 |
B | 3.288 | 1.444 | |||
3p (2P![]() |
2s2p2 (2S) | 284.1 | A | 0.622 | 0.606 |
B | 2.658 | 3.301 | |||
3p (2P![]() |
2s2p2 (2D) | 176.2 | A | 0.731 | 1.001 |
B | 3.877 | 4.391 | |||
2s2p2 (2D) - | 2p (2P![]() |
133.5 | A | 42.39 | 3.450 |
In Table 7 we compare our effective recombination coefficients
for some strong lines with the list given in Pèquignot et al.
([1991]) (PPB). There is reasonably good agreement for lines
originating from the 5g, 4f and 3d states. At first sight the agreement is
significantly worse for the lines originating from the
3p 2Po state. Most of the difference, however, arises
from the branching ratios from the 3p 2Po state to
lower states. In Case A, the total
for this state is
from our data and
from PPB. In
Case B the the corresponding values are
and
,
a difference of 23%. In Case B, most of the recombination to the
nd series passes through the 3p state rather than going directly to the
ground 2p state. A possible cause of the difference in the Case B results is
that the nd series is truncated at some relatively low principal quantum
number in PPB, whereas in our calculation the infinite series of nd states
is included.
The differences in the effective recombination coefficients for individual
lines from the 3p 2Po can be explained by differences in
the branching ratios, ,
from the 3p 2Po state to
lower states. In our calculation we have
,
and
while PPB give these parameters as 0.170, 0.313 and 0.517. We note
that our values of
are in reasonable agreement with data retrieved
from the Opacity Project data base (Cunto et al. [1993]) which give
0.311, 0.311 and 0.378 respectively.
The difference in
for the line 2s2p2 2D
-2s22p 2Po arises from dielectronic recombination
being not included in PPB. Here our coefficient is in good agreement with
the purely dielectronic coefficient
from Nussbaumer & Storey ([1983]).
Copyright The European Southern Observatory (ESO)