next previous
Up: Abstract

Astron. Astrophys. Suppl. Ser. 141, 165-173

FARGO: A fast eulerian transport algorithm for differentially rotating disks

F. Masset

Send offprint request: F. Masset

School of Mathematical Sciences, Queen Mary & Westfield College, Mile End Road, London E1 4NS, UK

Received July 19; accepted October 20, 1999


We present an efficient and simple modification of the standard transport algorithm used in explicit eulerian fixed polar grid codes, aimed at getting rid of the average azimuthal velocity when applying the Courant condition. This results in a much larger timestep than the usual procedure, and it is particularly well-suited to the description of a Keplerian disk where one is traditionally limited by the very demanding Courant condition on the fast orbital motion at the inner boundary. In this modified algorithm, the timestep is limited by the perturbed velocity and by the shear arising from the differential rotation. FARGO stands for "Fast Advection in Rotating Gaseous Objects''. The speed-up resulting from the use of the FARGO algorithm is problem dependent. In the example presented here, which shows the evolution of a Jupiter sized protoplanet embedded in a minimum mass protoplanetary nebula, the FARGO algorithm is about an order of magnitude faster than a traditional transport scheme, with a much smaller numerical diffusivity.

Key words: accretion -- accretion disks -- hydrodynamics -- methods: numerical

next previous
Up: Abstract

Copyright The European Southern Observatory (ESO)