next previous
Up: High resolution spectroscopy over GAIA,,


Online Material


 
Table 2: The lines that in the interval 8490-8750 Å show a residual central intensity F($\lambda $)/F(cont) $\leq $ 90% are given for 4 different models of solar metallicity (log g = 1.0 and 4.5 at T = 4500 K, log g=2.0 and 4.5 at T = 7500 K). The last four columns lists the residual central intensity (as from the original spectra at 500 000 resolving power before their degradation to 20 000). The other columns give the wavelength, the identification, the multiplet (multiplet for atoms and for molecules the system, the lower and upper v for the transition, the lower J and the branch), the excitation potential of the lower level and the log gfand its source, respectively. BWL: Black et al. 1972; FHSW: Figger et al. 1975; FMW: Fuhr et al. 1988; K88: Kurucz 1988; K: unpublished and in given in the line lists on CD-ROMs; KP: Kurucz & Peytremann 1975; LAMB: Lambert 1988; MFW: Martin et al. 1988; MULT: estimated by Kurucz from multiplet table intensity; NBS: Wiese et al. 1966
\begin{table}\smallskip{\psfig{file=tab2_a.ps,width=18cm} }
\end{table}


 
Table 2: continued
\begin{table}
{\psfig{file=tab2_b.ps,width=18cm} }
\end{table}


 
Table 2: continued
\begin{table}
{\psfig{file=tab2_c.ps,width=18cm} }
\end{table}


 
Table 2: continued
\begin{table}
{\psfig{file=tab2_d.ps,width=18cm} }
\end{table}


 
Table 2: continued
\begin{table}
{\psfig{file=tab2_e.ps,width=18cm} }
\end{table}


 \begin{figure}{\psfig{file=Fig_05.ps,angle=270,width=12truecm} }\end{figure} Figure 5: The T(K) = 3500, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_06.ps,angle=270,width=12truecm} }\end{figure} Figure 6: The T(K) = 3500, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_07.ps,angle=270,width=12truecm} }\end{figure} Figure 7: The T(K) = 3500, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_08.ps,angle=270,width=12truecm} }\end{figure} Figure 8: The T(K) = 3500, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_09.ps,angle=270,width=12truecm} }\end{figure} Figure 9: The T(K) = 3500, [Z/Z$_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_10.ps,angle=270,width=12truecm} }\end{figure} Figure 10: The T(K) = 3750, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_11.ps,angle=270,width=12truecm} }\end{figure} Figure 11: The T(K) = 3750, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_12.ps,angle=270,width=12truecm} }\end{figure} Figure 12: The T(K) = 3750, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_13.ps,angle=270,width=12truecm} }\end{figure} Figure 13: The T(K) = 3750, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_14.ps,angle=270,width=12truecm} }\end{figure} Figure 14: The T(K) = 3750, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_15.ps,angle=270,width=12truecm} }\end{figure} Figure 15: The T(K) = 4000, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_16.ps,angle=270,width=12truecm} }\end{figure} Figure 16: The T(K) = 4000, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_17.ps,angle=270,width=12truecm} }\end{figure} Figure 17: The T(K) = 4000, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_18.ps,angle=270,width=12truecm} }\end{figure} Figure 18: The T(K) = 4000, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_19.ps,angle=270,width=12truecm} }\end{figure} Figure 19: The T(K) = 4000, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_20.ps,angle=270,width=12truecm} }\end{figure} Figure 20: The T(K) = 4250, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_21.ps,angle=270,width=12truecm} }\end{figure} Figure 21: The T(K) = 4250, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_22.ps,angle=270,width=12truecm} }\end{figure} Figure 22: The T(K) = 4250, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_23.ps,angle=270,width=12truecm} }\end{figure} Figure 23: The T(K) = 4250, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_24.ps,angle=270,width=12truecm} }\end{figure} Figure 24: The T(K) = 4250, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_25.ps,angle=270,width=12truecm} }\end{figure} Figure 25: The T(K) = 4500, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_26.ps,angle=270,width=12truecm} }\end{figure} Figure 26: The T(K) = 4500, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_27.ps,angle=270,width=12truecm} }\end{figure} Figure 27: The T(K) = 4500, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_28.ps,angle=270,width=12truecm} }\end{figure} Figure 28: The T(K) = 4500, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_29.ps,angle=270,width=12truecm} }\end{figure} Figure 29: The T(K) = 4500, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_30.ps,angle=270,width=12truecm} }\end{figure} Figure 30: The T(K)=4750, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_31.ps,angle=270,width=12truecm} }\end{figure} Figure 31: The T(K) = 4750, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_32.ps,angle=270,width=12truecm} }\end{figure} Figure 32: The T(K) = 4750, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_33.ps,angle=270,width=12truecm} }\end{figure} Figure 33: The T(K) = 4750, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_34.ps,angle=270,width=12truecm} }\end{figure} Figure 34: The T(K) = 4750, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_35.ps,angle=270,width=12truecm} }\end{figure} Figure 35: The T(K) = 5000, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_36.ps,angle=270,width=12truecm} }\end{figure} Figure 36: The T(K) = 5000, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_37.ps,angle=270,width=12truecm} }\end{figure} Figure 37: The T(K) = 5000, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_38.ps,angle=270,width=12truecm} }\end{figure} Figure 38: The T(K) = 5000, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_39.ps,angle=270,width=12truecm} }\end{figure} Figure 39: The T(K) = 5000, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_40.ps,angle=270,width=12truecm} }\end{figure} Figure 40: The T(K) = 5250, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_41.ps,angle=270,width=12truecm} }\end{figure} Figure 41: The T(K) = 5250, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_42.ps,angle=270,width=12truecm} }\end{figure} Figure 42: The T(K) = 5250, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_43.ps,angle=270,width=12truecm} }\end{figure} Figure 43: The T(K) = 5250, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_44.ps,angle=270,width=12truecm} }\end{figure} Figure 44: The T(K) = 5250, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_45.ps,angle=270,width=12truecm} }\end{figure} Figure 45: The T(K) = 5500, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_46.ps,angle=270,width=12truecm} }\end{figure} Figure 46: The T(K) = 5500, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_47.ps,angle=270,width=12truecm} }\end{figure} Figure 47: The T(K) = 5500, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_48.ps,angle=270,width=12truecm} }\end{figure} Figure 48: The T(K) = 5500, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_49.ps,angle=270,width=12truecm} }\end{figure} Figure 49: The T(K) = 5500, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_50.ps,angle=270,width=12truecm} }\end{figure} Figure 50: The T(K) = 5750, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_51.ps,angle=270,width=12truecm} }\end{figure} Figure 51: The T(K) = 5750, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_52.ps,angle=270,width=12truecm} }\end{figure} Figure 52: The T(K) = 5750, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_53.ps,angle=270,width=12truecm} }\end{figure} Figure 53: The T(K) = 5750, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_54.ps,angle=270,width=12truecm} }\end{figure} Figure 54: The T(K) = 5750, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_55.ps,angle=270,width=12truecm} }\end{figure} Figure 55: The T(K) = 6000, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_56.ps,angle=270,width=12truecm} }\end{figure} Figure 56: The T(K) = 6000, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_57.ps,angle=270,width=12truecm} }\end{figure} Figure 57: The T(K) = 6000, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_58.ps,angle=270,width=12truecm} }\end{figure} Figure 58: The T(K) = 6000, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_59.ps,angle=270,width=12truecm} }\end{figure} Figure 59: The T(K) = 6000, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_60.ps,angle=270,width=12truecm} }\end{figure} Figure 60: The T(K) = 6250, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_61.ps,angle=270,width=12truecm} }\end{figure} Figure 61: The T(K) = 6250, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_62.ps,angle=270,width=12truecm} }\end{figure} Figure 62: The T(K) = 6250, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_63.ps,angle=270,width=12truecm} }\end{figure} Figure 63: The T(K) = 6250, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_64.ps,angle=270,width=12truecm} }\end{figure} Figure 64: The T(K) = 6250, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_65.ps,angle=270,width=12truecm} }\end{figure} Figure 65: The T(K) = 6500, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_66.ps,angle=270,width=12truecm} }\end{figure} Figure 66: The T(K) = 6500, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_67.ps,angle=270,width=12truecm} }\end{figure} Figure 67: The T(K) = 6500, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_68.ps,angle=270,width=12truecm} }\end{figure} Figure 68: The T(K) = 6500, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_69.ps,angle=270,width=12truecm} }\end{figure} Figure 69: The T(K) = 6500, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_70.ps,angle=270,width=12truecm} }\end{figure} Figure 70: The T(K) = 6750, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_71.ps,angle=270,width=12truecm} }\end{figure} Figure 71: The T(K) = 6750, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_72.ps,angle=270,width=12truecm} }\end{figure} Figure 72: The T(K) = 6750, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_73.ps,angle=270,width=12truecm} }\end{figure} Figure 73: The T(K) = 6750, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_74.ps,angle=270,width=12truecm} }\end{figure} Figure 74: The T(K) = 6750, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_75.ps,angle=270,width=12truecm} }\end{figure} Figure 75: The T(K) = 7000, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_76.ps,angle=270,width=12truecm} }\end{figure} Figure 76: The T(K) = 7000, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_77.ps,angle=270,width=12truecm} }\end{figure} Figure 77: The T(K) = 7000, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_78.ps,angle=270,width=12truecm} }\end{figure} Figure 78: The T(K) = 7000, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_79.ps,angle=270,width=12truecm} }\end{figure} Figure 79: The T(K) = 7000, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_80.ps,angle=270,width=12truecm} }\end{figure} Figure 80: The T(K) = 7250, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_81.ps,angle=270,width=12truecm} }\end{figure} Figure 81: The T(K) = 7250, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_82.ps,angle=270,width=12truecm} }\end{figure} Figure 82: The T(K) = 7250, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_83.ps,angle=270,width=12truecm} }\end{figure} Figure 83: The T(K) = 7250, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_84.ps,angle=270,width=12truecm} }\end{figure} Figure 84: The T(K) = 7250, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_85.ps,angle=270,width=12truecm} }\end{figure} Figure 85: The T(K) = 7500, [$Z/Z_\odot $] = -2.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_86.ps,angle=270,width=12truecm} }\end{figure} Figure 86: The T(K) = 7500, [$Z/Z_\odot $] = -1.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_87.ps,angle=270,width=12truecm} }\end{figure} Figure 87: The T(K)=7500, [$Z/Z_\odot $] = -0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_88.ps,angle=270,width=12truecm} }\end{figure} Figure 88: The T(K) = 7500, [$Z/Z_\odot $] = 0.0 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_89.ps,angle=270,width=12truecm} }\end{figure} Figure 89: The T(K) = 7500, [$Z/Z_\odot $] = +0.5 grid of synthetic spectra. The thick dashes mark the 1.00 level of the continuum


 \begin{figure}{\psfig{file=Fig_90.ps,angle=270,width=12truecm} }\end{figure} Figure 90: The observed solar spectrum from Kurucz et al. (1984) ATLAS (degraded to a resolving power $\lambda $/ $\Delta \lambda $ = 20 000), compared to the closest synthetic spectrum from the grid computed in this paper


 \begin{figure}{\psfig{file=Fig_91.ps,angle=270,width=12truecm} }\end{figure} Figure 91: The spectrum of the G5 V star HD 20630 from Paper I compared to the closest synthetic spectrum from the grid computed in this paper


 \begin{figure}{\psfig{file=Fig_92.ps,angle=270,width=12truecm} }\end{figure} Figure 92: The spectrum of the K5 V star HD 201091 from Paper I compared to the closest synthetic spectrum from the grid computed in this paper


 \begin{figure}{\psfig{file=Fig_93.ps,angle=270,width=12truecm} }\end{figure} Figure 93: The figure show the effect of changing the microturbolent velocity over the values $\xi $=1, 2 and 4 km s-1by comparing a zoomed portion for spectra characterized by the same $T\rm_{eff}$ = 5750 K, $\log~g$ = 2.0 and [$Z/Z_\odot $] = 0.0 parameters


next previous
Up: High resolution spectroscopy over GAIA,,

Copyright The European Southern Observatory (ESO)