next previous
Up: A representative sample of


1 Introduction

Classical Be stars are non-supergiant B stars which show, or have shown, Balmer line emission. In addition they show an infra-red continuum excess due to free free and bound free emission from a dense circumstellar envelope. Comparison of optical and UV spectra reveals the presence of a second circumstellar wind regime; a lower density, high velocity polar component responsible for the high excitation lines visible in UV spectra. That the denser component was concentrated in the equatorial plane has long been suspected. Recent interferometric data has confirmed this hypothesis (Quirrenbach et al. 1994; Stee et al. 1995).

Despite these direct observations of the circumstellar envelope, the dynamics and physical conditions within it are still largely unconstrained. Determination of parameters such as the density and temperature gradient of the disc would allow constraints to be placed on theoretical models of the Be phenomenon. At present some success has been achieved by modeling the continuum excess and H$\alpha$ line profile (Waters 1986; van Kerkwijk et al. 1995). However, the optical Hydrogen transitions do not allow us to probe the inner regions of the circumstellar disc. The rich recombination spectrum of Be stars in the near-IR provides a powerful tool to address these problems, given that the lines present at these wavelengths are likely to originate at smaller disc radii than those present in the optical region. Therefore, we can use near-IR spectra to probe the inner regions of the circumstellar disc where it is possible that deviations from a quasi-Keplerian disc may occur, due to transport of angular momentum, for example. Additionally, given that near IR wavelengths are less affected by interstellar extinction, it is hoped that a spectral classification scheme for classical Be stars can be developed for use in situations where standard optical classification is inappropriate (such as the identification of highly reddened counterparts to X-ray transient systems where it is impossible to obtain optical spectra for classification purposes).

This paper is the second of a series on the optical and near IR spectral properties of a representative sample of Be stars. In Steele et al. (1999) (Paper I) we presented optical spectra of a sample of 58 Be stars. The sample contains objects from O9 to B8.5 and of luminosity classes III (giants) to V (dwarfs), as well as three shell stars. A spectral type and value of $v \sin i$ was derived for each object in the sample. The sample is termed a "representative'' sample, in that it was selected in an attempt to contain several objects that were typical of each spectral and luminosity class in the above range. It therefore does not reflect the spectral and luminosity class space distribution of Be stars, but only the average properties of each subclass in temperature and luminosity. The distribution of $v \sin i$ within each temperature and luminosity class was carefully investigated and the conclusion drawn that there were no significant selection effects biasing the average properties of the objects.

This paper (Paper II) presents K band (2.05-2.22 $\mu $m) spectra of the 58 stars from Paper I, plus eight additional objects (Tables 1 and 2). The spectra show H I, He I and various metallic transitions. This paper discusses the relationships between the properties of the underlying B stars in the sample (from Paper I) with those of the observed transitions. Future papers in this series will extend this approach to the emission features present in optical, near-infrared and infra-red H band spectra of the same sample, with the eventual intention of modelling the combined datasets.


 
Table 1: Summary of the stellar parameters of the program stars (I). The spectral classifications and values of v sin i are from Paper I. Those values in italics are taken from the literature. w sin i is the projected breakup velocity of the star; see Sect. 5 for a further description. The morphological classification of each spectrum according to the criteria listed in Sect. 3 is listed in Col. 6, and the date of each observation (in 1996) in Col. 7
Object name Aliases Spectral Type $v \sin i$ $\omega \sin i$ Group Date
CD-28 14778 HD 171757 B2III 153 $\pm$ 21 0.42 1 29/06
CD-27 11872 V3892 Sgr, HD 161103 B0.5V-III 224 $\pm$ 33 0.48 1 29/06
CD-27 13183 HD 172158 B7V 174 $\pm$ 10 0.43 5 29/06
CD-27 16010 $\epsilon$ PsA, HR 8628, HD 214748 B8IV 187 $\pm$ 32 0.54 5 28/06
CD-25 12642 HD 164741 B0.7III 77 $\pm$ 18 0.19 2 29/06
BD-20 05381 HD 177015 B5V 202 $\pm$ 10 0.45 5 28/06
BD-19 05036 V3508 Sgr, HD 170682 B4III 121 $\pm$ 10 0.32 4 29/06
BD-13 00893 DU Eri, HR 1423, HD 28497 B1-3V 270 0.57 1 30/09
BD-12 05132 HD 172252 BN0.2III 120 $\pm$ 43 0.29 1 29/06
BD-08 00929 HD 30076 B2V - - 3 30/09
BD-05 01710 HR 2418, HD 47054 B8V 210 0.52 5 02/10
BD-02 05328 HD 196712 B7V 151 $\pm$ 15 0.35 5 28/06
BD-01 03834 HD 187350 B2IV 168 $\pm$ 34 0.41 1 28/06
BD-00 01468 HD 50209 B9V - - 5 02/10
BD-00 03543 HD 173371 B7V 271 $\pm$ 54 0.66 5 29/06
BD+00 01203 HD 39447 B5III - - 5 01/10
BD+01 01005 $\psi$01 Ori, HR 1789, HD 35439 B1-3V - - 1 01/10
BD+02 03815 HD 179343 B7-8sh 224 $\pm$ 14 0.62 5 28/06
BD+04 01002 47 Ori, HR 1934, HD 37490 B2-3III 155 0.33 1 01/10
BD+05 03704 HD 168797 B2.5V 221 $\pm$ 10 0.47 1 29/09
BD+17 04087 HD 350559 B6III-V 156 $\pm$ 39 0.42 4 28/09
BD+19 00578 13 Tau, HR 1126, HD 23016 B8V 240 $\pm$ 70 0.59 4 30/09
BD+20 04449 HD 191531 B0III 81 $\pm$ 11 0.19 2 28/06
BD+21 04695 25 Peg, HD 210129 B6III-V 146 $\pm$ 10 0.40 5 28/06
BD+23 01148 HD 250289 B2III 101 $\pm$ 10 0.28 2 02/10
BD+25 04083 HD 339483 B0.7III-B1II 79 $\pm$ 11 0.20 2 28/06
BD+27 00797 HD 244894 B0.5V 148 $\pm$ 74 0.27 2 01/10
BD+27 00850 HD 246878 B1.5IV 112 $\pm$ 25 0.26 2 02/10
BD+27 03411 $\beta$2 Cyg, HR 7418, HD 183914 B8V 194 $\pm$ 10 0.56 5 28/06
BD+28 03598 HD 333452 O9II 90 $\pm$ 12 0.21 2 28/06
BD+29 03842 HD 33226 B1II 91 $\pm$ 16 0.23 2 28/06
BD+29 04453 HD 205618 B1.5V 317 $\pm$ 20 0.63 1 28/06
BD+30 03227 HR 6971, HD 171406 B4V 218 $\pm$ 21 0.48 4 29/06
BD+31 04018 V2113 Cyg, HD 193009 B1.5V 211 $\pm$ 11 0.42 1 29/06
BD+36 03946 HD 228438 B1V 186 $\pm$ 21 0.36 1 28/06
BD+37 00675 HR 894, HD 18552 B7V 207 $\pm$ 29 0.48 5 30/09
BD+37 03856 HD 228650 B0.5V 104 $\pm$ 17 0.19 2 28/06
BD+40 01213 HD 33604 B2.5IV 128 $\pm$ 20 0.32 1 02/10
BD+42 01376 V434 Aur, HD 37657 B2V 196 $\pm$ 10 0.41 1 02/10
BD+42 04538 HD 216581 B2.5V 282 $\pm$ 10 0.6 3 28/06
BD+43 01048 HD 276738 B6IIIsh 220 $\pm$ 20 0.67 5 30/09
BD+45 00933 HD 27846 B1.5V 148 $\pm$ 16 0.29 2 30/09
BD+45 03879 HD 211835 B1.5V 193 $\pm$ 10 0.38 1 28/06
BD+46 00275 $\phi$ And, HR 335, HD 6811 B5III 113 $\pm$ 21 0.33 5 30/06
BD+47 00183 22 Cas, HR 193, HD 4180 B2.5V 173 $\pm$ 12 0.36 3 30/09
BD+47 00857 $\psi$ Per, HR 1087, HD 22192 B4IV-V 212 $\pm$ 16 0.47 3 30/09
BD+47 00939 48 Per, HR 1273, HD 25940 B2.5V 163 $\pm$ 12 0.35 3 30/09
BD+47 03985 EW Lac, HR 8731, HD 217050 B1-2sh 284 $\pm$ 20 0.67 1 28/06
BD+49 00614 HD 13867 B5III 90 $\pm$ 27 0.27 5 30/09



 
Table 2: Summary of the stellar parameters of the program stars (II). Notation as Table 1
Object name Aliases Spectral Type v sin i w sin i Group Date
BD+50 00825 HR 1160, HD 23552 B7V 187 $\pm$ 10 0.44 5 30/09
BD+50 03430 HD 207232 B8V 230 $\pm$ 15 0.56 5 28/06
BD+51 03091 HR 8259, HD 20551 B7III 106 $\pm$ 10 0.33 5 28/06
BD+53 02599 HD 203356 B8V 191 $\pm$ 23 0.47 5 28/06
BD+55 00552 HD 13669 B4V 292 $\pm$ 17 0.65 1 30/09
BD+55 00605 V361 Per, HD 14605 B1V 126 $\pm$ 35 0.25 1 30/09
BD+55 02411 HD 195554 B8.5V 159 $\pm$ 90 0.39 5 29/06
BD+56 00469 V473 Per, HD 13831 B0-2III 167 $\pm$ 28 0.33 1 30/09
BD+56 00473 V356 Per B1V-III 238 $\pm$ 19 0.54 1 30/09
BD+56 00478 V358 Per, HD 13890 B1.5V 157 $\pm$ 12 0.31 1 30/09
BD+56 00484 V502 Per B1V 173 $\pm$ 16 0.33 1 30/09
BD+56 00493 - B1V-IV 270 $\pm$ 10 0.52 2 30/09
BD+56 00511 - B1III 99 $\pm$ 14 0.25 1 30/09
BD+56 00573 - B1.5V 250 $\pm$ 58 0.5 1 30/09
BD+57 00681 HD 237056 B0.5V 147 $\pm$ 49 0.27 1 30/09
BD+58 00554 HD 237060 B7V 229 $\pm$ 10 0.54 5 30/09
BD+58 02320 HD 239758 B2V 243 $\pm$ 20 0.51 1 28/06



next previous
Up: A representative sample of

Copyright The European Southern Observatory (ESO)