next previous
Up: Comparison between ISRA and


Appendix B:

A computation analogous to the previous one can be performed in the case of a Poisson process. In this case, we must compute the gradient of:

\begin{displaymath}J(x)=\int^{x=+\infty}_{x=-\infty}[(h\otimes x)-y{\rm Log}(h\otimes x)]{\rm d}u.
\end{displaymath} (B1)

Considering for the variable "x'', an increase "$\rho$'' in the general direction "s'', we have:
$\displaystyle J(x+\rho s)$ = $\displaystyle \int^{u=+\infty}_{u=-\infty}[\{ h\otimes (x+\rho s) \}$  
    $\displaystyle -y
{\rm Log}\{h\otimes (x+\rho s)\}]{\rm d}u$ (B2)


\begin{displaymath}J(x+\rho s)=
\int^{u=+\infty}_{u=-\infty}\Biggl[\{(h\otimes x)\end{displaymath}
\begin{displaymath}+\rho(h\otimes s)\}-y
{\rm Log}\left\{(h\otimes x)(1+\rho\frac{(h\otimes s)}{(h\otimes x)}\right\}
\Biggr]{\rm d}u
\end{displaymath} (B3)


\begin{displaymath}J(x+\rho s)=
\int^{u=+\infty}_{u=-\infty}\Biggl[(h\otimes x)+\rho(h\otimes s)
-y
{\rm Log}(h\otimes h)\end{displaymath}
\begin{displaymath}-y{\rm Log}\left\{1+\rho\frac{(h\otimes s)}{(h\otimes
x)}\right\}\Biggr]{\rm d}u
\end{displaymath} (B4)

with a first order series expansion:

\begin{displaymath}J(x+\rho s)=
\int^{u=+\infty}_{u=-\infty}\Biggl[(h\otimes x)+\rho(h\otimes s)\end{displaymath}
\begin{displaymath}-y
{\rm Log}(h\otimes x)-y\rho\frac{(h\otimes s)}{(h\otimes x)}\Biggr]{\rm d}u
\end{displaymath} (B5)

then

\begin{displaymath}J(x+\rho s)=
\int^{u=+\infty}_{u=-\infty}\bigl[(h\otimes x)
-y
{\rm Log}(h\otimes
x)\bigr]{\rm d}u
\end{displaymath}
\begin{displaymath}+\rho\int^{u=+\infty}_{u=-\infty}\left[(h\otimes s)-y\frac{(h\otimes
s)}{(h\otimes x)}\right]{\rm d}u
\end{displaymath} (B6)

comparing this relation with: $J(x+\rho s)=J(x)+\rho J'(x,s)$ we have :

\begin{displaymath}J'(x,s)=\int^{u=+\infty}_{u=-\infty}\left[(h\otimes s) -y\frac{(h\otimes s)}{(h\otimes
x)}\right]{\rm d}u
\end{displaymath} (B7)

that is:

\begin{displaymath}J'(x,s)=\int^{u=+\infty}_{u=-\infty}\left[1-\frac{y}{(h\otimes x)}\right](h\otimes s){\rm
d}u
\end{displaymath} (B8)

with the integral form of the convolution product, we have:

\begin{displaymath}J'(x,s)=
\int^{u=+\infty}_{u=-\infty}\left[1-\frac{y}{(h\otimes
x)}\right]
\end{displaymath}
\begin{displaymath}\int^{t=+\infty}_{t=-\infty}s(t)h(u-t){\rm d}t{\rm d}u
\end{displaymath} (B9)

or, re-ordering the integrals:

\begin{displaymath}J'(x,s)=
\int^{t=+\infty}_{t=-\infty}s(t)\end{displaymath}
\begin{displaymath}\int^{u=+\infty}_{u=-\infty}\left[1-\frac{y}{(h\otimes x)}
\right]h(u-t){\rm d}u{\rm d}t.
\end{displaymath} (B10)

Let:

\begin{displaymath}H(u)=\left[1-\frac{y(u)}{(h(u)\otimes x(u))}\right]
\end{displaymath} (B11)

with the change of variables: z=u-t, we obtain:

\begin{displaymath}J'(x,s)=\int^{t=+\infty}_{t=-\infty}s(t)\int^{z=+\infty}_{z=-\infty}H(t+z)h(z){\rm d}z {\rm d}t
\end{displaymath} (B12)

that is:

\begin{displaymath}J'(x,s)=\int^{t=+\infty}_{t=-\infty}s(t)[h(-t)\otimes H(t)]{\rm d}t.
\end{displaymath} (B13)

Using the definition of the derivative of J(x) at x in the direction s we obtain:

\begin{displaymath}\nabla J(x)=h(-u)\otimes \left[1-\frac{y(u)}{h(u)\otimes x(u)}\right]\cdot
\end{displaymath} (B14)

Acknowledgements
We are grateful to Professor Jean CEA for stimulating discussions, in particular for help in the formulation of the appendices.


next previous
Up: Comparison between ISRA and

Copyright The European Southern Observatory (ESO)