next previous
Up: Stark broadening of the


Appendix A: Calculation of $H(n,\Delta n)$

\begin{eqnarray}
H\left( n,\Delta n\right) =\sum_{l,m}{\mid \langle n+\Delta n,l...
 ...d Z\mid
n,l,m\rangle \mid ^2} \nonumber \\ \times h(n,l,\Delta n) \end{eqnarray}
(A1)
where $h(n,l,\Delta n)$ is given by formula (17). As $h(n,l,\Delta n)$ is independent of m, one can write:

\begin{eqnarray}
& & H\left( n,\Delta n\right) =\sum_{l} {h\left(n,l,\Delta 
n\r...
 ...m_{m}\mid
\langle n+\Delta n,l+1,m\mid Z\mid n,l,m\rangle \mid^2. \end{eqnarray}
(A2)
Further,

\begin{eqnarray}
\sum_{m}{\mid \langle n+\Delta n,l+1,m\mid Z\mid n,l,m\rangle \mid ^2} \nonumber \\ =\frac{l+1}3\left( R_{nl}^{n+1,l+1}\right) ^2. \end{eqnarray}
(A3)
So


\begin{displaymath}
H\left( n,\Delta n\right) =\sum_{l=0}^{n-1}{\frac{l+1}3\left(
R_{nl}^{n+1,l+1}\right) ^2h(n,l,\Delta n).} \end{displaymath} (A4)
The calculation of $F(n,\Delta n),$ is carried out in a similar way, after replacing $h(n,l,\Delta n)$ by $f(n,l,\Delta n).$



next previous
Up: Stark broadening of the

Copyright The European Southern Observatory (ESO)