next previous
Up: Thermal history and structure


Appendix A: Hartle's formalism

We have solved the equations derived by Hartle and Thorne which describe the structure of slowly rotating relativistic stars (Hartle 1967; Hartle & Thorne 1968). When the static equilibrium configuration is perturbed by rotation, the geometry of space-time is changed. For an appropriate choice of coordinates, the perturbed geometry is described by (c=G=1)
\begin{eqnarray}
{\rm d}s^{2} & = & -{\rm e}^{\nu} \left[ 1\, +\, 2(h_{\mbox{\ti...
 ...ega {\rm d}t)^{\mbox{\tiny 2}}]\, +\,
 O(\Omega^{\mbox{\tiny 3}}),\end{eqnarray}
(A1)
where P2 is the Legendre polynomial of order 2; $\omega$, which is called the angular velocity of the local inertial frame, is a function of r and is proportional to the star's angular velocity $\Omega$. In the above equations $h_{\mbox{\tiny 0}}$, $h_{\mbox{\tiny 2}}$,$m_{\mbox{\tiny 0}}$, $m_{\mbox{\tiny 2}}$ and $v_{\mbox{\tiny 2}}$are all functions of r proportional to $\Omega^{\mbox{\tiny 2}}$. The quantity $\overline{\omega}\, \equiv \,
\Omega\, -\, \omega$ is the angular velocity of the fluid relative to the local inertial frame.

The surface of constant density in the rotating configuration is given by the radius
\begin{displaymath}
r\, +\, \xi_{\mbox{\tiny 0}}(r)\, +\, \xi_{\mbox{\tiny 2}}
(r) P_{2}(\cos\, \theta),\end{displaymath} (A2)
where
\begin{displaymath}
\xi_{\mbox{\tiny 0}}\ =\ -p_{\mbox{\tiny 0}}^{\ast} ( E\, +\,
p)/({\rm d}p/{\rm d}r),\end{displaymath} (A3)
(in fact, this equation defines $p_{\mbox{\tiny 0}}^{\ast}$)
\begin{displaymath}
\xi_{\mbox{\tiny 2}}\ =\ -p_{\mbox{\tiny 2}}^{\ast} (E\, +\,
p)/({\rm d}p/{\rm d}r),\end{displaymath} (A4)

\begin{displaymath}
p_{\mbox{\tiny 2}}^{\ast}\ =\ -h_{\mbox{\tiny 2}}\, -\,
 \frac{r^{2} \overline{\omega}^{2}}
{3 {\rm e}^{\nu}}\cdot\end{displaymath} (A5)
In order to have an invariant parametrization of a surface of constant density, it can be embedded in a three-dimensional flat space, with coordinates $r^{\ast}$, $\theta^{\ast}$ and $\phi^{\ast}$. The surface in the flat space is, to order $\Omega^{2}$, the spheroid
\begin{eqnarray}
r^{\ast}(\theta^{\ast}) & = & r\, +\, \xi_{\mbox{\tiny 0}}(r) \...
 ...}}(r)\, -\,
 h_{\mbox{\tiny 2}}(r)]\} P_{2}(\cos\, \theta^{\ast}).\end{eqnarray}
(A6)
The mean radius of this spheroid is
\begin{displaymath}
\overline{r}^{*} = r + \xi_{\mbox{\tiny 0}} (r).\end{displaymath} (A7)
After some algebraic manipulations, Einstein equations for a perfect fluid can be written as:
\begin{displaymath}
\frac{{\rm d}m}{{\rm d}r}\ =\ 4 \pi r^{2} \rho,\end{displaymath} (A8)

\begin{displaymath}
\frac{{\rm d}p}{{\rm d}r}\ =\ -\, \frac{( \rho\, +\, p)( m\, +\, 4 \pi
r^3 p)}{r ( r\, -\, 2m )},\end{displaymath} (A9)

\begin{displaymath}
\frac{{\rm d}\nu}{{\rm d}r}\ =\ 2\frac{m\, +\, 4 \pi r^{3} p}{r( r\, -\, 2 m
)}, \end{displaymath} (A10)

\begin{displaymath}
\frac{{\rm d}\xi}{{\rm d}r}\ =\ \frac{u}{r^{4}}\, -\, \frac{4 \pi r^{4} (
\rho\, +\, p )} {r\, -\, 2m},\end{displaymath} (A11)

\begin{displaymath}
\frac{{\rm d}u}{{\rm d}r}\ =\ \frac{16 \pi r^{5} \xi (\rho\, +\, p)}{r\, -\,
2m}, \end{displaymath} (A12)

\begin{displaymath}
\frac{{\rm d}m_{\mbox{\tiny 0}}}{{\rm d}r}\ =\ 4 \pi r^{2} (...
 ...\, \frac{8 \pi r^{5} (\rho\, +\, p )
\xi^{2}}{3 ( r\, -\, 2m)},\end{displaymath} (A13)
\begin{eqnarray}
\frac{{\rm d}p_{\mbox{\tiny 0}}^{\ast}}{{\rm d}r} & = & \frac{u...
 ... +\, \frac{(r\, -\, 3m-\, 4 \pi r^{3} p)
\xi}{r\, -\, 2m} \right],\end{eqnarray}
(A14)
\begin{eqnarray}
\frac{{\rm d}( \delta E_{\rm B} )}{4 \pi r^{2} {\rm d}r} & = &
...
 ...ac{8 \pi r^{5} (\rho\, +\, p) \xi^{2}}{3 r ( r\, -\, 2m)}
\right],\end{eqnarray}
(A15)
\begin{eqnarray}
\frac{{\rm d}v_{\mbox{\tiny 2}}}{{\rm d}r} & = & \frac{1}{r(r\,...
 ...i^{2}}{3(r\, -\, 2m)} 
 +\, \frac{u^{2}}{6r^{4}} \right]
\right\},\end{eqnarray}
(A16)
\begin{eqnarray}
\frac{{\rm d}h_{\mbox{\tiny 2}}}{{\rm d}r} & = & h_{\mbox{\tiny...
 ...ht. \\  & & \left. +\,
\frac{1}{2(m\, +\, 4 \pi r^{3} p)} \right].\end{eqnarray}
(A17)
We have introduced the intermediate variables u and $\xi$ in order to split the equation of second order for $\overline{\omega}$ into a system of two equations of first order:
\begin{displaymath}
u\ =\ r^{4}j \frac{{\rm d} \overline{\omega}}{{\rm d}r},\end{displaymath} (A18)
where
\begin{displaymath}
j\ =\ {\rm e}^{- \nu/2} \sqrt{1\, -\, \frac{2m}{r}},\end{displaymath} (A19)

\begin{displaymath}
\xi\ =\ j \overline{\omega}.\end{displaymath} (A20)
We must also integrate the homogeneous equations for $h_{\mbox{\tiny 2}}$ and $v_{\mbox{\tiny 2}}$in order to obtain the general solution
\begin{displaymath}
\frac{{\rm d} v_{\mbox{\tiny 2}}^{\rm h}}{{\rm d}r}\ =\ -\, ...
 ...iny 2}}^{\rm h} \frac{m\, +\, 4 \pi r^{3} p}{r ( r\, -\,
2m)}, \end{displaymath} (A21)
\begin{eqnarray}
\frac{{\rm d}h_{\mbox{\tiny 2}}^{\rm h}}{{\rm d}r} & = & h_{\mb...
 ...
 -\, \frac{2 v_{\mbox{\tiny 2}}^{\rm h}}{m\,
 +\, 4 \pi r^{3} p}.\end{eqnarray}
(A22)
The expression for $\frac{{\rm d} \rho}{{\rm d} P}$ can be deduced from the relativistic thermal equilibrium condition and the equation of hydrostatic equilibrium
\begin{displaymath}
\left( \frac{{\rm d} \rho}{{\rm d} p} \right)_{\rm H.E.}\! =...
 ...! \left( \frac{\partial p}{\partial T} \right)_{\rho}
\right]. \end{displaymath} (A23)
The boundary conditions at the center are the following:
\begin{displaymath}
\nu_{\rm c}\ =\ 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...
 ...\ \ \left( \frac{{\rm d} \nu}
{{\rm d}r} \right)_{\rm c}\ =\ 0,\end{displaymath} (A24)

\begin{displaymath}
\xi_{\rm c}\ =\ j_{\rm c} \overline{\omega}_{\rm c}\ =\ \ove...
 ...\ \ \left( \frac{{\rm d} \xi}{{\rm d}r} \right)_{\rm c}\ =\
0, \end{displaymath} (A25)

\begin{displaymath}
u_{\rm c}\ =\ 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...
 ...\ \ \
\ \left( \frac{{\rm d}u}{{\rm d}r} \right)_{\rm c}\ =\ 0,\end{displaymath} (A26)

\begin{displaymath}
m_{\mbox{\tiny 0}\rm c}\ =\ 0, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...
 ...ac{{\rm d} m_{\mbox{\tiny 0}}}{{\rm d}r} \right)_{\rm c}\ =\ 0,\end{displaymath} (A27)

\begin{displaymath}
p_{\mbox{\tiny 0}\rm c}^{\ast}\ =\ 0,\ \ \ \ \ \ \ \ \ \ \ \...
 ...{\mbox{\tiny 0}
\rm c}^{\ast}}{{\rm d}r} \right)_{\rm c}\ =\ 0,\end{displaymath} (A28)

\begin{displaymath}
\delta E_{\rm B_{c}}\ =\ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...
 ...frac{{\rm d} \delta E_{\rm B}}{{\rm d}r}
\right)_{\rm c}\ =\ 0,\end{displaymath} (A29)

\begin{displaymath}
v_{\mbox{\tiny 2}\rm c}\ =\ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ...
 ...ac{{\rm d}v_{\mbox{\tiny 2}}}
{{\rm d}r} \right)_{\rm c}\ =\ 0,\end{displaymath} (A30)

\begin{displaymath}
h_{\mbox{\tiny 2}\rm c}\ =\ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ...
 ...ac{{\rm d}h_{\mbox{\tiny 2}}}
{{\rm d}r} \right)_{\rm c}\ =\ 0,\end{displaymath} (A31)

\begin{displaymath}
v_{\mbox{\tiny 2}\rm c}^{\rm h}\ =\ 0,\ \ \ \ \ \ \ \ \ \ \ ...
 ...d}v_{\mbox{\tiny 2}}^{\rm
h}} {{\rm d}r} \right)_{\rm c}\ =\ 0,\end{displaymath} (A32)

\begin{displaymath}
h_{\mbox{\tiny 2}\rm c}^{\rm h}\ =\ 0,\ \ \ \ \ \ \ \ \ \ \ ...
 ...d}h_{\mbox{\tiny 2}}^{\rm h}}
{{\rm d}r} \right)_{\rm c}\ =\ 0.\end{displaymath} (A33)
The homogeneous equations for h2 and v2 must verify the following conditions at the center
\begin{displaymath}
\lim_{r \rightarrow 0} h_{\mbox{\tiny 2}}^{\rm h}\ =\ A r^{2},\end{displaymath} (A34)

\begin{displaymath}
\lim_{r \rightarrow 0} v_{\mbox{ 2}}^{\rm h}\ =\ B r^{4},\end{displaymath} (A35)
with A and B non null constants related by
\begin{displaymath}
B\, +\, 2 \pi \left( p_{c}\, +\, \frac{p}{3} \right) A\ =\ 0.\end{displaymath} (A36)
The general solution can be written
\begin{displaymath}
v_{\mbox{\tiny 2}}\ =\ A' v_{\mbox{\tiny 2}}^{\rm h}\, +\, v_{\mbox{\tiny
2}}^{\rm p},\end{displaymath} (A37)

\begin{displaymath}
h_{\mbox{\tiny 2}}\ =\ A' h_{\mbox{\tiny 2}}^{\rm h}\, +\, h_{\mbox{\tiny
2}}^{\rm p}. \end{displaymath} (A38)
Outside the star $h_{\mbox{\tiny 2}}$ and $v_{\mbox{\tiny 2}}$ have the analytic form:
\begin{displaymath}
h_{\mbox{\tiny 2}}\ =\ J^{2} \left( \frac{1}{M r^{3}}\, +\, ...
 ...right)\,
+\, K Q_{2}^{ \ 2} \left( \frac{r}{M}\, -\, 1 \right),\end{displaymath} (A39)

\begin{displaymath}
v_{\mbox{\tiny 2}}\ =\ - \frac{J^{2}}{r^{4}}\, +\, \frac{2
 ...
 ...\, 2M)]^{1/2}}
Q_{2}^{ \ 1} \left( \frac{r}{M}\, -\, 1 \right),\end{displaymath} (A40)
where K is a constant, $Q_{n}^{ \ m}$ is the associated Legendre polynomial of the second kind and J is given by:
\begin{displaymath}
J\ =\ \frac{ue^{- \nu/2}}{6 \sqrt{1\, -\, 2 \frac{M}{R}}}.\end{displaymath} (A41)
K and A' are obtained by matching $h_{\mbox{\tiny 2}}$and $v_{\mbox{\tiny 2}}$ to the external solution. But before doing this we must scale all the variables by the appropriate factor so that the potential at the surface and $\overline{\omega}$reach the correct values given by the expressions:
\begin{displaymath}
\nu_{\mbox{\tiny S}}\ = 2\frac{\log \left (\sqrt{1\, -\, \frac{2M}{R}}
\right)}{2},\end{displaymath} (A42)

\begin{displaymath}
\Omega_{\rm k}\ =\ \overline{\omega}\, +\, \frac{2J}{R^{3}}\ =\
\sqrt{\frac{M}{R^{3}}}.\end{displaymath} (A43)
We have integrated the above system of equations with the corresponding boundary conditions from the center to the surface by using standard ODE solvers (fourth order Runge-Kutta). The star's surface is fixed by the condition $P(r=R) = P(\rho_{\rm surf}), \rho_{\rm surf}
\approx 5 \ 10^{9}$ g/cm3.

The correction to the gravitational mass induced by rotation is then
\begin{displaymath}
\delta M = m_{0} (R) + J^{2}/R^{3}.\end{displaymath} (A44)
We have calculated the "amu" mass ($M_{\rm A}$) and the "proper" mass $(M_{\rm P})$:
\begin{displaymath}
M_{\rm A}=\ 4 \pi \int_{0}^{R} r^{2} {\rm e}^{\Lambda} \rho_{\mbox{\tiny 0}}
{\rm d} r,\end{displaymath} (A45)

\begin{displaymath}
M_{\rm P}=\ 4 \pi \int_{0}^{R} r^{2} {\rm e}^{\Lambda} \rho {\rm d} r,\end{displaymath} (A46)
with
\begin{displaymath}
{\rm e}^{\Lambda}\ =\ \left( 1\, -\, \frac{2m}{r} \right)^{-1/2}.\end{displaymath} (A47)
The mean adiabatic index is given by
\begin{displaymath}
\left< \Gamma_{1} \right\gt\ =\
\frac{\int_{0}^{R} r^{2} p (...
 ...m d}r}
{\int_{0}^{R} r^{2} p ( 1\, -\, 2 m/r)^{-1/2} {\rm d}r}.\end{displaymath} (A48)
Other quantities of interest are: the moment of inertia
\begin{displaymath}
I\ =\frac{J}{\Omega},\end{displaymath} (A49)
the binding energy
\begin{displaymath}
E_{\rm B}\ =\ M_{\rm A}\, -\, M,\end{displaymath} (A50)
the change in the binding energy due to the rotation is
\begin{displaymath}
\delta E_{\rm B}\ =\ \delta M_{\rm A}\, -\, \delta M.\end{displaymath} (A51)
The total number of baryons, A, in the nonrotating star is related to $M_{\rm A}$ by
\begin{displaymath}
M_{\rm A}\ =\ \mu A,\end{displaymath} (A52)
where $\mu$ is the rest mass per baryon.

The quadrupolar momentum is defined as
\begin{displaymath}
Q\ =\ \frac{8 K M^{3}}{5}\, +\, \frac{J^{2}}{M}.\end{displaymath} (A53)
Finally, the eccentricity at the surface, e, of the spheroid is defined by
\begin{eqnarray}
e & = & [({\rm radius \,\, at \,\, equator})^{2}/({\rm radius \...
 ...}}\, -\, h_{\mbox{\tiny 2}}\, +\,
 \xi_{\mbox{\tiny 0}}/r)]^{1/2}.\end{eqnarray}
(A54)
Let us notice the fact that quantities such as $\delta M$, $\delta R$($\equiv \xi_{\mbox{\tiny 0}} (R)$), $\delta E_{\rm B}$ and Q scale as $\Omega^{2}$ and e does as $\Omega$.


next previous
Up: Thermal history and structure

Copyright The European Southern Observatory (ESO)