next previous
Up: Measurement of optical seeing


2 Principles of microthermal measurement of seeing

The pairs of microthermal sensors used in this experiment measure the temperature structure function associated with the turbulence:

 
 \begin{displaymath}
D_{\rm T}(\mbox{\boldmath$\rho$}, h)=\langle\left(T({\bf r}, h) - T({\bf 
r}+\mbox{\boldmath$\rho$}, h)\right)^{2}\rangle\end{displaymath} (1)
where $\rho$ is the separation of the sensors and h is the altitude. Assuming fully developed turbulence according to the theory of Kolmogorov (Tatarski 1961), with $\vert\mbox{\boldmath$\rho$}\vert$between the inner and outer scales of the turbulent motion (the "inertial sub- range''), we can obtain the corresponding refractive index structure parameter using (Roddier 1981):

 
 \begin{displaymath}
C_{\rm N}^{2}(h)=\left(80.10^{-6} \frac{P(h)}{T(h)^{2}}\right)^{2} \rho^{-2/3} 
D_{\rm T}(\mbox{\boldmath$\rho$}, h)\end{displaymath} (2)
where P(h) is the pressure and T(h) the temperature.

The seeing quality is commonly described in terms of the "Fried parameter'' (Fried 1966):

 
 \begin{displaymath}
r_{0}=\left(0.423k^{2}\sec\gamma\int_{h_{0}}^{\infty}C_{\rm N}^{2}(h){\rm 
d}h\right)^{-3/5}\end{displaymath} (3)
where k is the wavenumber, $\gamma$ the zenith angle and h0 the height of the telescope.

The Fried parameter is interpreted as the spatial coherence scale of the atmosphere. Atmospheric turbulence reduces the image resolution from O($\lambda/D$), where D is the telescope diameter, to O($\lambda/r_{0}$). The exact expression for the full width at half maximum of the "seeing disk'' is (Roddier 1981; Dierickx 1992):

 
 \begin{displaymath}
\varepsilon_{\rm fwhm}=0.98\frac{\lambda}{r_{0}}\cdot\end{displaymath} (4)


next previous
Up: Measurement of optical seeing

Copyright The European Southern Observatory (ESO)