next previous
Up: A series of theoretical components


Appendix B

As we are dealing with scattering along the ray and the medium has no sources, we can set B = 0 and U2 = 0. Then the intensities $\tau$ are given by,
\begin{displaymath}
U^+ (\tau) = U_1 {\rm e}^{-k \tau} \frac {1 - r^2 {\rm e}^{-2k (T - \tau)}} {1 - 
r^2 {\rm e}^{-2kt}}, \end{displaymath} (B1)

\begin{displaymath}
U^- (\tau) = r \ U_1 \frac {{\rm e}^{-k \tau} - {\rm e}^{-k (2T - \tau)}} {1 - r^2 
{\rm e}^{-2kT}},\end{displaymath} (B2)
where
\begin{displaymath}
k^2 = (1 - \omega) [1 + \omega (1 - 2p)], \end{displaymath} (B3)
and
\begin{displaymath}
\ \ \ \ r = \frac {k - 1 + \omega} {k + 1 - \omega}. \end{displaymath} (B4)
And the emergent intensities are
\begin{displaymath}
U^+ (T) = U_1 \frac {{\rm e}^{-kT} (1 - r^2)} {1 - r^2 {\rm e}^{-2kT}}, \end{displaymath} (B5)

\begin{displaymath}
U^-(0) = U_1 r \frac {1 - {\rm e}^{-2kT}} {1 - r^2 {\rm e}^{-2kT}}. \end{displaymath} (B6)
If we represent the reflection and transmission coefficients by r(T) and t(T) respectively, then and
\begin{displaymath}
r(T) = r \frac {1 - {\rm e}^{-2kT}} {1 - r^2 {\rm e}^{-2kT}},\end{displaymath} (B7)

\begin{displaymath}
t(T) = \frac {(1-r^2) {\rm e}^{-kT}} {1-r^2 {\rm e}^{-2kT}}.\end{displaymath} (B8)
We set $p=\frac {1} {2}$ (for isotropic scattering) then
\begin{displaymath}
k = (1 - \omega)^{1/2}, \ r = \frac {1 - k} {1 + k}. \end{displaymath} (B9)
In the above treatment we assumed that $\omega < 1$. If $\omega = 1$, the case of pure scattering, the treatment will be different and we obtain, (for B = 0 and U2 = 0)
\begin{displaymath}
{\bf U}= \frac {U_1} {1 + T(1-p)}
\left[
 \begin{array}
{l}
 1+(T-\tau)(1-p) \\  (T-\tau)(1-p)\end{array}\right]\end{displaymath} (B10)

The reflection and transmission factors are
\begin{displaymath}
r(T) = \frac {T(1-p)} {1 + T (1-p)} \rightarrow 1 \ {\rm as} \ T \rightarrow 
\infty, \end{displaymath} (B11)


\begin{displaymath}
t(T) = \frac {1} {1 + T (1-p)} \rightarrow 0 \ {\rm as} \ T \rightarrow 
\infty,\end{displaymath} (B12)
so that


r(T) + t(T) = 1.

(B13)

which express conservation of energy.


next previous
Up: A series of theoretical components

Copyright The European Southern Observatory (ESO)