next previous
Up: A CO() and ()


Appendix

The derivation of estimates for the uncertainties in flux S, position $\eta$, and width $\theta$ of a one-dimensional gaussian brightness distribution centered at $\eta = 0$ and sampled at locations $\eta_j = \pm j\cdot \theta_B/2$ ($j=0\ldots N$,$\;\theta_B$ is the beamwidth) with additive noise $\epsilon$ of zero mean and variance $\sigma^2_N$


\begin{displaymath}
B_j(S,\theta) = S \exp\,(-((\eta_j-\eta)^2/2\theta^2))_{\vert _{\eta=0}}+
 \epsilon\,(\eta_j,0,\sigma^2_N) \end{displaymath} (8)
requires the use of non-linear regression. A Gaussian profile is indeed non-linear in $\eta$ and $\theta$ according to


\begin{displaymath}
\delta B/\delta \eta \sim \eta \,B\,\theta^{-2}
\mbox{\hskip...
 ...hskip 3mm}
\delta B/\delta \theta \sim \eta^2 \,B\,\theta^{-3}.\end{displaymath} (9)

Though non-linear regression is required to derive estimates of the uncertainties in S, $\eta$ and $\theta$, we used an approach suggested by the iterative Gauss-Newton method (Bates & Watts 1988) to derive a linear approximation to these estimates in the limit of high signal-to-noise ($=S/\sigma_N$). In this case the one sigma confidence limit for the position $\eta$ in the limit of high N can be written to


\begin{displaymath}
\sigma^{-2}_\eta \cong \sigma^{-2}_N \cdot \lim_{N \rightarrow \infty} 
 \sum_{j=0}^N (\delta B_j/\delta \eta_j)^2\end{displaymath} (10)
with similar expressions for $\sigma^{-2}_S$ and $\sigma^{-2}_\theta$.According to equation (10) the uncertainties in S, $\eta$ and $\theta$ for the gaussian brightness distribution B are given by


\begin{displaymath}
\sigma_S^{-1} \cong \sigma^{-1}_N \cdot \left(\lim_{N \rightarrow \infty}
 \sum_j^N j^4/4^{(jR)^2}\right)^{-1/2} \end{displaymath} (11)
\begin{eqnarray}
\sigma_\eta^{-1} &\cong & 4\sqrt{2}\log 2 \cdot
\sigma^{-1}_N\,...
 ...im_{N \rightarrow \infty}
 \sum_j^N j^2/ 4^{(jR)^2}\right)^{-1/2} \end{eqnarray}
(12)


\begin{eqnarray}
\sigma_{\theta}^{-1} &\cong & 2\log2 \cdot \sigma^{-1}_N\, 
R^{...
 ...eft(\lim_{N \rightarrow \infty}\sum_j^N 4^{-(jR)^2}\right)^{-1/2} \end{eqnarray}
(13)
where $R = \theta_B/\theta$. Note that in the R=1 limit (i.e. an unresolved object) the uncertainties can roughly be estimated to $\sigma_S \cong \sigma_N$, $\;\sigma_\eta \cong
(\theta_B/2)(\sigma_N/S)$ and $\sigma_\theta \cong \theta_B
(\sigma_N/S)$. The errors in the estimates are reasonably small for samples with snr $\ge 10$. In analogy, statistical estimates for S, $\eta$ and $\theta$ according to the two-dimensional case were approximated to $\sigma_S \cong 0.7 \sigma_N$, $\;\sigma_\eta \cong
(\theta_B/2)(\sigma_N/S)$ and $\sigma_\theta \cong \theta_B
\sigma_N/S$ and found to be better than 20% for data with snr $\ge 10$.


next previous
Up: A CO() and ()

Copyright The European Southern Observatory (ESO)