next previous
Up: Atomic data for

1. Introduction

Chemically peculiar stars are known to display a high Mn abundance: manganese lines are strong in Bp stars, especially in the HgMn subgroup (Jaschek & Jaschek 1995). Examples are tex2html_wrap_inline1014 Cancri, HR 7245 and tex2html_wrap_inline1016 Lupi. Higher ionization will be found in Ap stars. While the 4s-4p transitions of Mn III are certainly expected to appear e.g. in stellar Hubble (HST) spectra, most identification work up to now is restricted to Mn I and Mn II (Adelman et al. 1993; Wahlgren et al. 1994; Lopez-Garcia & Adelman 1994; Wahlgren et al. 1995; Pintado & Adelman 1996). It seems that a lack of knowledge of the Mn III spectrum frustrates the identification possibilities at the moment and therefore, the calculation of Mn III intensities appears a logical project to undertake. The 3d-4p transitions of Mn III, however, fall below the HST 1200 Å\ limit, but may in the near future be observed at high resolution by FUSE-LYMAN down to the onset of the Lyman continuum at 912 Å.

The present work is the second to calculate transition probabilities in the framework of orthogonal operators. It has been shown (Raassen & Uylings 1996) to give reliable results for complex atoms, i.e. atoms with Z> 20 and more than one electron outside closed shells. Characteristics of the method can be found in our recent publication on Ti III and V IV (Raassen & Uylings 1997). In Sect. 2, a short introduction of the method is given. In Sect. 3, details of the calculation as well as the numerical results are presented.

1.1. Orthogonal operators

Theoretical transition probabilities can be obtained either from pure ab initio calculations or from an admixture of first principles theory and input of experimental energies. Examples of the first method are Multi-Configuration Hartree-Fock (MCHF, Froese Fischer 1978) or Dirac-Fock (MCDF, Parpia et al. 1996), and the Configuration Interaction Version 3 code (CIV3, Hibbert 1975). The second, semi-empirical approach is more apt for the study of complex atoms, in view of the required eigenvector accuracy. The semi-empirical method consists of the following steps:

In its original form this approach already has considerable success (Cowan 1981; Kurucz 1993), especially in the field of the heavier and more complex atoms where it is particularly powerful compared to other methods.

Subsequently, the introduction of orthogonal operators in the model Hamiltonian (Hansen et al. 1988), as a consequence of which the parameters become more stable and relatively independent of one another, turns out to raise the accuracy of the approach by up to an order of magnitude. The parameter independency offers the possibility to include additional operators that account for smaller effects like higher order or pure relativistic interactions.

   

3d44p 3d34s4p 3d24s24p 3d45p3d44f
3d5 .729 -- .192 .349
3d44s -2.480 .607 - .143 -
3d34s2--2.280.515--
3d44d -2.910 --3.220 -4.300
3d45s 1.570 - --5.360 -
Table 1: Values for the electric dipole transition integrals in Mn III calculated by means of MCDF including core polarization

   

tex2html_wrap_inline1072(Å)log(gf)tex2html_wrap_inline1076 tex2html_wrap_inline1078(cm-1)eventex2html_wrap_inline1082 tex2html_wrap_inline1084(cm-1) odd
2433.471 -.741 1.5 71564.21*2tex2html_wrap_inline1090D)4D .5 112645.31*1tex2html_wrap_inline1090D)4P
2423.720 -.390 2.5 71831.98*2tex2html_wrap_inline1090D)4D 1.5 113078.34*1tex2html_wrap_inline1090D)4P
2423.504 -.705 .5 71395.27*2tex2html_wrap_inline1090D)4D .5 112645.31*1tex2html_wrap_inline1090D)4P
2409.301 -.241 3.5 72183.33*2tex2html_wrap_inline1090D)4D 2.5 113676.53*1tex2html_wrap_inline1090D)6D
2408.086 -.616 1.5 71564.21*2tex2html_wrap_inline1090D)4D 1.5 113078.34*1tex2html_wrap_inline1090D)4P
2389.069 -.757 2.5 71831.98*2tex2html_wrap_inline1090D)4D 2.5 113676.53*1tex2html_wrap_inline1090D)6D
2374.314 -.205 3.5 72183.33*2tex2html_wrap_inline1090D)4D 2.5 114287.91*1tex2html_wrap_inline1090D)6D
2365.414 -.679 2.5 71831.98*2tex2html_wrap_inline1090D)4D 1.5 114094.97*1tex2html_wrap_inline1090D)6D
2354.663 -.865 2.5 71831.98*2tex2html_wrap_inline1090D)4D 2.5 114287.91*1tex2html_wrap_inline1090D)6D
2350.520 -.972 1.5 71564.21*2tex2html_wrap_inline1090D)4D 1.5 114094.97*1tex2html_wrap_inline1090D)6D
2238.026 -.604 3.5 72183.33*2tex2html_wrap_inline1090D)4D 3.5 116851.69*1tex2html_wrap_inline1090D)4F
2228.457 -.448 2.5 71831.98*2tex2html_wrap_inline1090D)4D 2.5 116692.14*1tex2html_wrap_inline1090D)4F
2227.451 .428 3.5 72183.33*2tex2html_wrap_inline1090D)4D 4.5 117063.74*1tex2html_wrap_inline1090D)4F
2220.743 -.537 1.5 71564.21*2tex2html_wrap_inline1090D)4D 1.5 116580.17*1tex2html_wrap_inline1090D)4F
Table 2: Calculated log(gf) values for the (3d5+3d44s) - 3d44p transition array of Mn III

   

3d5 3d44s 3d34s2 3d44d 3d45s
3d5 1.58 -2.25- -1.49 0.062
3d44s -2.25 1.34 1.24 8.57 -
3d34s2 - 1.241.64 - -
3d44d -1.49 8.57 -1.30-24.3
- --22.3 -
3d45s 0.062 ---24.3 1.30
Table 3: Values for the electric quadrupole transition integrals in Mn III calculated by means of MCDF including core polarization

   

tex2html_wrap_inline1072(Å)tex2html_wrap_inline1280(s-1)tex2html_wrap_inline1284 (s-1)tex2html_wrap_inline1076 tex2html_wrap_inline1078(cm-1)nametex2html_wrap_inline1082 tex2html_wrap_inline1084(cm-1)name
5588.3823.61(-2)4.24(- 2) 2.5 51002.70*1tex2html_wrap_inline1302F) 3.5 68892.00*1tex2html_wrap_inline1304G)
5586.134-2.85(-3) 2.5 51002.70*1tex2html_wrap_inline1302F) 4.5 68899.20*1tex2html_wrap_inline1304G)
5583.326-2.24(-3) 1.5 43674.70*1tex2html_wrap_inline1314F) 1.5 61580.20*1tex2html_wrap_inline1304D)
5581.4871.34(-3)1.30(-3) 1.5 61580.20*1tex2html_wrap_inline1304D) 2.5 43668.80*1tex2html_wrap_inline1314F)
5574.142-3.38(-3) 2.5 43668.80*1tex2html_wrap_inline1314F) 2.5 61603.80*1tex2html_wrap_inline1304D)
5544.587-1.93(-3) 2.5 61603.80*1tex2html_wrap_inline1304D) 4.5 43573.20*1tex2html_wrap_inline1314F)
5411.2742.10(-3)1.95(-3) 1.5 61580.20*1tex2html_wrap_inline1304D) 2.5 43105.40*1tex2html_wrap_inline1304F)
5404.3701.58(-3)1.98(-2) 2.5 43105.40*1tex2html_wrap_inline1304F) 2.5 61603.80*1tex2html_wrap_inline1304D)
5347.4221.87(-3)- 2.5 51002.70*1tex2html_wrap_inline1302F) 3.5 32307.30*1tex2html_wrap_inline1358D)
5268.987-2.47(-3) 1.5 61580.20*1tex2html_wrap_inline1304D) 3.5 42606.50*1tex2html_wrap_inline1304F)
5262.4413.61(-3)- 2.5 61603.80*1tex2html_wrap_inline1304D) 3.5 42606.50*1tex2html_wrap_inline1304F)
5086.0876.82(-2)- 3.5 26859.90*1tex2html_wrap_inline1358G) 4.5 46515.90*1tex2html_wrap_inline1304H)
Table 4: Calculated A-values for the (3d5+3d44s) - (3d5+3d44s) M1 and E2 transition arrays of Mn III; the notation x(y) means tex2html_wrap_inline1276

While the method is semi-empirical, ab initio calculations are important in the procedure, both in obtaining initial estimates of the parameters (especially the parameters for the relativistic effects are sometimes left fixed at their ab initio value) and in finding the required radial transition integrals.

For more details on the method and for information on the parameter values and their behaviour, we refer to our recently published overview article on dN-1p configurations (Uylings & Raassen 1996). Everybody interested in orthogonal operators is invited to contact the authors or to visit our Internet address ftp://nucleus.phys.uva.nl in the directory pub/orth.


next previous
Up: Atomic data for

Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr