next previous
Up: Extragalactic database

Appendix A: Calculation of the actual uncertainty

Let us assume that for a given galaxy we have n measurements tex2html_wrap_inline2435 (i=1,n) of a given parameter obtained from different references, each reference having a weight tex2html_wrap_inline2439, where tex2html_wrap_inline2441 is the standard error of the i-th individual measurement. The actual uncertainty is calculated as:


equation605

The first term tex2html_wrap_inline2445 denotes the inverse of the total weight The total weight, tex2html_wrap_inline2447, is simply the sum of individual weights. (i.e. tex2html_wrap_inline2449). This first term accounts for the accuracy of the reference of each individual measurement because the standard error of a given measurement is assigned globaly from e.g., the reference or the resolution etc... It is obvious that some individual measurements coming from a good reference can be affected by a local problem (e.g., multiplicity of the galaxy, star superimposed on the galaxy, bad seeing, misidentification etc...). This fact will be taken into account by the second term.

The second term in the definition of the actual error is a measure of the consistency of the different measurements building the mean measurement. It is calculated as the weighted standard deviation:
equation615
where: tex2html_wrap_inline2451, tex2html_wrap_inline2453, tex2html_wrap_inline2455.

The main advantage of the actual error is that it clearly shows any internal uncertainty and any external discrepancy.

Appendix B: LEDA's Astrophysical parameters

--------------------------------------------------------------------------------
Parameter FORTRAN  FORTRAN columns  definition
name      name     format           
================================================================================
pgc       pgcleda  a11      1- 11   PGC or LEDA name (PGC = LEDA)           
ident     ident    a16     12- 27   1st name (NGC,IC,UGC,ESO...)           
ipad      ipadc    a1      28- 28   `*' for coordinates better than 10"
al1950    al1950   f10.5   29- 38   R.A. (B1950) (decimal hours)     
de1950    de1950   f10.5   39- 48   DEC. (B1950) (decimal degrees)    
al2000    al2000   f10.5   49- 58   R.A. (J2000) (decimal hours)          
de2000    de2000   f10.5   59- 68   DEC. (J2000) (decimal degrees)       
l2        al2      f10.3   69- 78   galactic longitude (degrees)        
b2        ab2      f10.3   79- 88   galactic latitude (degrees)        
sgl       sgl      f10.3   89- 98   supergalactic longitude (degrees) 
sgb       sgb      f10.3   99-108   supergalactic latitude (degrees)         
typ       typc     a5,1x  109-114   morph. type (e.g. `E', `Sab', `SBa', `SO')
morph     morphc   a4     115-118   `B' for Barred gal.   (see note below)
                                    `R' for Ring gal. 
                                    `M' for multiple gal. 
                                    `C' for compact, 'D' for diffuse
t         t        f10.3  119-128   morph. type code ($-$5 to 10)
st        st       f10.3  129-138   actual uncertainty on t           
lc        alc      f10.3  139-148   luminosity class (1 to 11) 
slc       slc      f10.3  149-158   actual uncertainty on lc          
log$d25$    alog$d25$  f10.3  159-168   log10 of isophotal diameter ($d$25 in 0.1$'$)   
slog$d25$   slog$d25$  f10.3  169-178   actual uncertainty on log$d25$ 
log$r25$    alog$r25$  f10.3  179-188   log10 of the axis ratio (major/minor axis)
slog$r25$   slog$r25$  f10.3  189-198   actual uncertainty on log$r25$           
pa        pa       f10.3  199-208   position angle (N->E) in degrees      
brief     brief    f10.3  209-218   effective surface brightness (mag arcsec-2)
sbrief    sbrief   f10.3  219-228   actual uncertainty on brief                 
bt        bt       f10.3  229-238   total $B$-magnitude                         
sbt       sbt      f10.3  239-248   actual uncertainty on bt    
ubt       ubt      f10.3  249-258   ($U-B)_{\rm T}$                                      
bvt       bvt      f10.3  259-268   ($B-V)_{\rm T}                                     
ube       ube      f10.3  269-278   ($U-B)_{\rm e}                                    
bve       bve      f10.3  279-288   ($B-V)_{\rm e}                                   
w20       w20      f10.3  289-298   21-cm line width at 20% of peak (in km/s)
sw20      sw20     f10.3  299-308   actual uncertainty on w20  
w50       w50      f10.3  309-318   21-cm line width at 50% of peak (in km/s) 
sw50      sw50     f10.3  319-328   actual uncertainty on w50          
logs      alog$s$    f10.3  329-338   log of the central velocity disp.(s in km/s)
slogs     slog$s$    f10.3  339-348   actual uncertainty on logs  
m21       am21     f10.3  349-358   HI-magnitude                                
sm21      sm21     f10.3  359-368   actual uncertainty on $m_{21}$ 
mfir      amfir    f10.3  369-378   far-infrared magnitude                    
vrad      vrad     f10.3  379-388   radio heliocentric radial velocity in km/s
svrad     svrad    f10.3  389-398   actual uncertainty on $v$rad       
vopt      vopt     f10.3  399-408   optical heliocentric radial velocity in km/s
svopt     svopt    f10.3  409-418   actual uncertainty on $v$opt 
v         v        f10.3  419-428   actual heliocentric radial velocity in km/s 
sv        sv       f10.3  429-438   actual uncertainty on $v$                    
--------------------------------------------------------------------------------

--------------------------------------------------------------------------------
Parameter FORTRAN  FORTRAN columns  definition
name      name     format           
================================================================================
lgg       algg     f10.3  439-448   Lyon's galaxy group number             
ag        ag       f10.3  449-458   galactic extinction in $B$-mag 
ai        ai       f10.3  459-468   internal absorption (in $B$-mag)              
incl      aincl    f10.3  469-478   inclination
a21       a21      f10.3  479-488   HI self-absorption 
lambda    alambda  f10.3  489-498   luminosity-index 
logdc     alogdc   f10.3  499-508   log of the corrected diameter ($dc$ in 0.1$'$)
btc       btc      f10.3  509-518   corrected $B$-magnitude                    
ubtc      ubtc     f10.3  519-528   ($U-B)_0$                                 
bvtc      bvtc     f10.3  529-538   ($B-V)_0$                                
bri25     bri25    f10.3  539-548   mean surf. brightness within 25 m/"
logvm     alogvm   f10.3  549-558   log of max.circ. rot. vel.
slogvm    slogvm   f10.3  559-568   actual uncertainty on logvm
m21c      am21c    f10.3  569-578   corrected HI-magnitude 
hic       hic      f10.3  579-588   HI color index        
vlg       vlg      f10.3  589-598   radial vel. relative to the LG
vgsr      vgsr     f10.3  599-608   radial vel. relative to the GSR
vvir      vvir     f10.3  609-618   radial vel. corrected for Virgo infall
v3k       v3k      f10.3  619-628   radial vel. relative to the CBR
mucin     amucin   f10.3  629-638   kinematical distance modulus ($H$ = 75 km/s/Mpc)
mabs      amabs    f10.3  639-648   absolute $B$ magnitude from mucin and mupar 
identi    identi   20a16  649-968   alternate names
--------------------------------------------------------------------------------
note: The parameter "morph" can be read as 4 parameters (4a1 format)
      for Bar, Ring, Multiple and Compactness, respectively.



Copyright by the European Southern Observatory (ESO)
web@ed-phys.fr