next previous
Up: Abstract

A&A Supplement series, Vol. 122, April II 1997, 381-396

Received March 14; accepted July 22, 1996

Three-dimensional chromospheric magnetic field configurations based on photospheric-vector and chromospheric-multi-level longitudinal-magnetic field observations

S. Cuperman - C. Bruma - D. Heristchi

Send offprint request: S. Cuperman
DASOP, Observatoire de Paris, Section Meudon, F-92195 Meudon Principal Cedex, France


The three-dimensional (3D) reconstruction of magnetic configurations above the photosphere is considered within the framework of the nonlinear force-free-field (FFF) model. The physical- computational algorithm proposed and tested incorporates, for the first time, the following basic features: 1) Both photospheric vector field, tex2html_wrap_inline2275 and chromospheric line of sight field component, tex2html_wrap_inline2277 data are utilized; this reduces significantly the degree of ill-posedness characterizing the Cauchy problem corresponding to the case when only tex2html_wrap_inline2279 - values are used as boundary conditions. 2) A high-order, very efficient computational algorithm is developed and used: horizontal derivatives are evaluated by 14 - terms formulas in 14 different forms, selected such as to provide optimal computational accuracy; the vertical integration is achieved by the use of ``moving" 10 - term formulas expressed in terms of 10 derivatives and the first tex2html_wrap_inline2289 values (i=x,y,z). 3) At neutral points, where inherent computational singularities in the values of the FFF-function tex2html_wrap_inline2293 arise, rather than using smoothing techniques based on four-neighbouring- values averages, suitable procedures ensuring continuity are developed and used. The overall result of the incorporation of these novel features is an improvement by orders of magnitude of the accuracy with which the chromospheric fields are reconstructed in the case in which one uses (i) only tex2html_wrap_inline2295 - values as boundary conditions and (ii) relative simple computational formulas and smoothing techniques; at tex2html_wrap_inline2297, tex2html_wrap_inline2299 ! The elimination/minimization of measurement errors as well as the fitting of the corrected date to FFF-model-states is also discussed.

keywords: MHD -- methods: numerical -- Sun: magnetic fields

next previous
Up: Abstract

Copyright by the European Southern Observatory (ESO)